Теория относительности
План:
1. Происхождение названия «теория относительности»
2. Теория относительности, как современная теория пространства-времени
3. Постулаты Эйнштейна
4. Вывод преобразрваний Лоренца без постулата о постоянстве скорости света
5. Изображение преобразований Лоренца на плоскости Минковского
6. Некоторые «парадоксы» теории относительности:
6.а. Сокращение движущихся масштабов
6.б. Замедление движущихся часов
6.в. Парадокс часов
7. Список используемой литературы
Происхождение названия «теория относительности»
Название «теория относительности» возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени.
Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.
Название же «принцип относительности» или «постулат относительности», возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.
Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром. Зародилось, таким образом, представление об абсолютном движении относительно системы, связанной с эфиром, представление, противоречащее более ранним воззрениям классической механики (принцип относительности Галилея). Опыты Майкельсона и других физиков опровергли эту теорию «неподвижного эфира» и дали основание для формулировки противоположного утверждения, которое и получило название «принципа относительности». Так это название вводится и обосновывается в первых работах Пуанкаре и Эйнштейна.
Эйнштейн пишет: «. неудавшиеся попытки обнаружить движение Земли относительно «светоносной среды» ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того, — к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться «принципом относительности») превратить в предпосылку… «А вот что пишет Пуанкаре: «Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок.»
Но крупнейший советский теоретик Л. И. Мандельштам в своих лекциях по теории относительности разъяснял: «Название «принцип относительности» — одно из самых неудачных. Утверждается независимость явлений от неускоренного движения замкнутой системы. Это вводит в заблуждение многие умы» На неудачность названия указывал и один из творцов теории относительности, раскрывший ее содержание в четырехмерной геометрической форме, — Герман Минковский. В 1908 г. он утверждал: «…термин «постулат относительности» для требования инвариантности по отношению к группе , кажется мне слишком бедным. Так как смысл постулата сводится к тому, что в явлениях нам дается только четырехмерный в пространстве и времени мир, но что проекции этого мира на пространство и на время могут быть взяты с некоторым произволом, мне хотелось бы этому утверждению дать название: постулат абсолютного мира»
Таким образом, мы видим, что названия «принцип относительности» и «теория относительности» не отражают истинного содержания теории.
Теория относительности, как современная теория пространства-времени.
Содержание теории относительности, как четырехмерной физической теории пространства и времени, впервые отчетливо было вскрыто Германом Минковским в 1908 г. Лишь опираясь на эти представления, Эйнштейн сумел в 1916 г. построить общую теорию пространства-времени, включающую явление гравитации (общая теория относительности).
Основным отличием представлений о пространстве и времени теории относительности от представлений ньютоновской физики является ограниченная взаимосвязь пространства и времени. Эта взаимосвязь раскрывается в формулах преобразования координат и времени при переходе от одной системе отсчета к другой (преобразования Лоренца)
Вообще каждое физическое явление протекает в пространстве и времени и не может быть изображено в нашем сознании иначе, как в пространстве и во времени. Пространство и время суть формы существования материи. Никакой материи не существует вне пространства и времени. Конкретным изображением пространства и времени является система отсчета, составляющие воображаемую сетку и временную последовательность всех возможных пространственных и временных точек. Одно и то же пространство и время могут изображаться различными координатно-временными сетками (системами отсчета).
Вместо чисел пространство-время может изображаться числами
причем эти числа не произвольны, а связаны с предыдущими совершенно определенного вида формулами преобразования, которые и выражают свойства пространства-времени.
Итак, каждое возможное изображение пространства и времени можно связать с определенной системой отсчета, систему отсчета — с реальным телом, координаты — с конкретными точками тела, моменты времени с показаниями конкретных часов, расставленных в различных системах отсчета. Тело отсчета необходимо для проведения конкретных измерений пространственно-временных отношений.
Не следует однако отожествлять систему отсчета с телом отсчета, как это предполагают физики. Физики при изображении явлений пользуются любыми системами отсчета, в том числе и такими с которыми невозможно связать какое-либо реальное тело. Основанием для такого выбора служит представление о полном равноправии всех мыслимых систем отсчета. Следовательно, выбор системы отсчета является лишь выбором способа изображения пространства и времени для отображения исследуемого явления.
Если выбраны две системы отсчета и
, каждая из которых подобным образом изображает одно и то же пространство-время, то, как это установлено в теории относительности, координаты в системах
и
связаны так, что интервал
, определяемый для двух разобщенных событий как
(a)
остается одинаковым при переходе от Е к Е',
(b)
Иначе говоря, является инвариантом преобразований Лоренца, связывающих координаты и время в
и
:
,
(c)
Из ©, так же как из (a) и (b), следует относительность одновременности пространственно разобщенных событий, в системе
движущейся со скоростью
, будем иметь
(d)
В этих свойствах пространственно-временных координат и отражается существо новых представлений о пространстве и времени, связанных в единое геометрического типа многообразие, многообразие с особой, определяемой (а) и (b) четырехмерной псевдоевклидовой геометрией, геометрией, в которой время тесно связано с пространством и не может рассматриваться независимо от последнего, как это видно из (d).
Из этих же представлений вытекают важнейшие следствия для законов природы, выражаемые в требовании ковариантности (т.е. неизменяемости формы) любых физических процессов по отношению к преобразованиям четырехмерных пространственно-временных координат. В требовании также отражается представление о пространстве-времени как о едином четырехмерном многообразии. Так представляют себе физики, конкретно применяющие теорию относительности, ее реальное содержание. При этом понятие относительности приобретает лишь смысл возможной множественности пространственно-временных изображений явлений при абсолютности содержания,
Постулаты Эйнштейна.
Преобразования Лоренца, отражающие свойства пространства-времени, были выведены Эйнштейном, исходя из 2 постулатов: принципа относительности и принципа постоянства скорости света.
1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся.
2. Каждый луч света движется в «покоящейся» системе координат с определенной скоростью , независимо от того, испускается ли этот луч света покоящимся или движущимся телом.
Значение этих постулатов для дальнейшего развития теории пространства-времени состояло в том, что их принятие прежде всего означало отказ от старых представлений о пространстве и времени, как о многообразиях, не связанных органически друг с другом.
Принцип относительности сам по себе не представлял чего-либо абсолютно нового, т.к. он содержался и в Ньютоновской физике, построенной на базе классической механики. Принцип постоянства скорости света также не был чем-то абсолютно неприемлемым с точки зрения ньютоновских представлений о пространстве и времени.
Однако эти два принципа, взятые вместе привели к противоречию с конкретными представлениями о пространстве и времени, связанные с механикой Ньютона. Это противоречие можно проиллюстрировать следующим парадоксом.
Пусть в системе отсчета в начальный момент
в точке, совпадающей с началом координат произошла вспышка света. В последующий момент времени
фронт световой волны, в силу закона постоянства скорости света, распространился до сферы радиуса
с центром в начале координат системы
. Однако в соответствии с постулатами Эйнштейна, это же явление мы можем рассмотреть и точки зрения системы отсчета
, движущейся равномерно и прямолинейно вдоль оси
, так, что ее начало координат и направления всех осей совпадали в момент времени
с началом координат и направлениями осей первоначальной системы
. В этой движущейся системе, соответственно постулатам Эйнштейна, за время
свет также распространится до сферы радиуса
радиуса, однако, в отличие о предыдущей сферы должен лежать в начале координат системы
, а не
. Несовпадение этих сфер,
, неодновременны в другой, движущейся системе
, и наоборот. Тогда одновременные события, состоящие в достижении световым фронтом сферы, определяемой уравнением
, не являются одновременными с точки зрения системы
, где одновременны другие события, состоящие в достижении тем же световым фронтом точек сферы, определяемой уравнением
Таким образом, одновременность пространственно разобщенных событий перестает быть чем-то абсолютным, как это принято считать в повседневном макроскопическом опыте, а становится зависящей от выбора системы отсчета и расстояния между точками, в которых происходит события. Эта относительность одновременности пространственно разобщенных событий свидетельствует о том, что пространство и время тесно связаны друг с другом, т.к. при переходе о одной системе отсчета к другой, физически эквивалентной, промежутки времени между событиями становятся зависящими от расстояний (нулевой промежуток становится конечным и наоборот).
Итак, постулаты Эйнштейна помогли нам прийти к новому фундаментальному положению в физической теории пространства и времени, положению о тесной взаимосвязи пространства и времени и об их нераздельности, в этом и состоит главное значение постулатов Эйнштейна.
Основное содержание теории относительности играет постулат о постоянстве скорости света. Основным аргументов в пользу этого является та роль, которую отводил Эйнштейн световым сигналам, с помощью которых устанавливается одновременность пространственно разобщенных событий. Световой сигнал, распространяющийся всегда только со скоростью света, приравнивается, таким образом, к некоторому инструменту, устанавливающему связь между временными отношениями в различных системах отсчета, без которого якобы понятия одновременности разобщенных событий и времени теряют смысл. Необходимость такого истолкования содержания теории относительности легко доказывается, если обратиться к одному из возможных выводов преобразований Лоренца, опирающемуся на постулат относительности и вместо постулата о постоянстве скорости света использующему лишь допущение о зависимости массы тела от скорости.
Вывод преобразований Лоренца без постулата о постоянстве скорости света.
Для вывода преобразований Лоренца будем опираться лишь на «естественные» допущения о свойствах пространства и времени, содержавшиеся еще в классической физике, опиравшейся на общие представления, связанные с классической механикой: