Ответы на билеты по физике

Зависимость давления в жидкости и газе от глубины приводит к возникновению выталкивающей силы, действующей на любое тело, погруженное в жидкость или газ. Эту силу называют архимедовой силой. Если в жидкость погрузить тело, то давления на боковые стенки сосуда уравновешиваются друг другом, а равнодействующая давлений снизу и сверху является архимедовой силой. , т. е. силы, выталкивающая погруженное в жидкость (газ) тело, равна весу жидкости (газа), вытесненной телом. Архимедова сила направлена противоположно силе тяжести, поэтому при взвешивании в жидкости вес тела меньше, чем в вакууме. На тело, находящееся в жидкости, действует сила тяжести и архимедова сила. Если сила тяжести по модулю больше — тело тонет, меньше — всплывает, равны — может находиться в равновесии н любой глубине. Эти отношения сил равны отношениям плотностей тела и жидкости (газа).

23. Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Масса и размер молекул.

Молекулярно-кинетической теорией называется учение о строении и свойствах вещества, использующее представление о существовании атомов и молекул как наименьших частиц вещества. Основные положения МКТ: вещество состоит из атомов и молекул, эти частиц хаотически движется, частицы взаимодействую друг с другом. Движение атомов и молекул и их взаимодействие подчиняется законам механики. Во взаимодействии молекул при их сближении сначала преобладают силы притяжения. На некотором расстоянии между ними возникают силы отталкивания, превосходящие по модулю силы притяжения. Молекулы и атомы совершают беспорядочные колебания относительно положений, где силы притяжения и отталкивания уравновешивают друг друга. В жидкости молекулы не только колеблются, но и перескакивают из одного положения равновесия в другое (текучесть). В газах расстояния между атомами значительно больше размеров молекул (сжимаемость и расширяемость). Р. Броун в начале 19 век обнаружил, что в жидкости беспорядочно движутся твердые частицы. Это явление могла объяснить только МКТ,. Беспорядочно движущиеся молекулы жидкости или газа сталкиваются с твердой частицей и изменяют направление и модуль скорости ее движения (при этом, разумеется, изменяя и свое направление и скорость). Чем меньше размеры частицы тем более заметными становятся изменение импульса. Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорциональным количеству частиц. Единица количества вещества называется моль. Моль равен количеству вещества, содержащей столько атомов, сколько содержится их в 0.012 кг углерода 12С. Отношение числа молекул к количеству вещества называют постоянной Авогадро: . Количество вещества можно найти как отношение числа молекул к постоянной Авогадро. Молярной массой M называется величина, равная отношению массы вещества m к количеству вещества . Молярная масса выражается в килограммах на моль. Молярную массу можно выразить через массу молекулы m0: .

24. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. В этой модели предполагается следующее: молекулы газа обладают пренебрежимо малыми размера по сравнению с объемом сосуда, между молекулами не действуют силы притяжения, при соударении друг с другом и стенками сосуда действуют силы отталкивания. Качественное объяснение явления давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними как упругие тела. При столкновении молекулы со стенкой сосуда проекция вектора скорости на ось, перпендикулярную стенке, меняется на противоположную. Поэтому при столкновении проекция скорости меняется от -mvx до mvx, и изменение импульса равно . Во время столкновения молекула действует на стенку с силой, равной по третьему закону Ньютона силе, противоположной по направлению. Молекул очень много, и среднее значение геометрической суммы сил, действующих со стороны отдельных молекул, и образует силу давления газа на стенки сосуда. Давление газа равно отношению модуля силы давления к площади стенки сосуда: p=F/S. Предположим, что газ находится в кубическом сосуде. Импульс одной молекулы составляет 2mv, одна молекула воздействует на стенку в среднем с силой 2mv/D t. Время D t движения от одной стенки сосуда к другой равно 2l/v, следовательно, . Сила давления на стенку сосуда всех молекул пропорциональна их числу, т. е. . Из-за полной хаотичности движения молекул движение их по каждому из направлений равновероятно и равно 1/3 от общего числа молекул. Таким образом, . Так как давление производится на грань куба площадью l2, то давление будет равно. Это уравнение называется основным уравнением молекулярно-кинетической теории. Обозначив за среднюю кинетическую энергию молекул, получим.

25. Температура, ее измерение. Абсолютная температурная шкала. Скорость молекул газа.

Основное уравнение МКТ для идеального газа устанавливает связь между микро- и макроскопическими параметрами. При контакте двух тел изменяются их макроскопические параметры. Когда это изменение прекратилось, говорят, что наступило тепловое равновесие. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называют температурой тела. Опыты показали, что для любого газа, находящегося в состоянии теплового равновесия, отношение произведения давления на объем к количеству молекул есть одинаково . Это позволяет принять величину в качестве меры температуры. Так как n=N/V, то с учетом основного уравнения МКТ, следовательно, величина равна двум третям средней кинетической энергии молекул. , где k — коэффициент пропорциональности, зависящий от шкалы. В левой части этого уравнения параметры неотрицательны. Отсюда — температура газа при котором его давление при постоянном объеме равно нулю, называют абсолютным нулем температуры. Значение этого коэффициента можно найти по двум известным состояниям вещества с известными давлением, объемом, числом молекул температуре. . Коэффициент k, называемый постоянной Больцмана, равен . Из уравнений связи температуры и средней кинетической энергии следует, т. е. средняя кинетическая энергия хаотического движения молекул пропорциональна абсолютной температуре. , . Это уравнение показывает, что при одинаковых значениях температуры и концентрации молекул давление любых газов одинаково.

26. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изотермический, изохорный и изобарный процессы.

Используя зависимость давления от концентрации и температуры, можно найти связь между макроскопическими параметрами газа — объемом, давлением и температурой. . Это уравнение называют уравнением состояния идеального газа (уравнение Менделеева-Клапейрона).

Изотермическим процессом называется процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре, массе и составе газа произведение давления на объем должно оставаться постоянным. Графиком изотермы (кривой изотермического процесса) является гипербола. Уравнение называют законом Бойля-Мариотта.

Изохорным процессом называется процесс, протекающий при неизменном объеме, массе и составе газа. При этих условиях, где — температурный коэффициент давления газа. Это уравнение называется законом Шарля. График уравнения изохорного процесса называется изохорой, и представляет из себя прямую, проходящую через начало координат.

Изобарным процессом называется процесс, протекающий при неизменном давлении, массе и составе газа. Аналогичным образом как и для изохорного процесса можно получить уравнение для изобарного процесса . Уравнение, описывающее этот процесс, называется законом Гей-Люссака. График уравнения изобарного процесса называется изобарой, и представляет из себя прямую, проходящую через начало координат.

27. Внутренняя энергия. Работа в термодинамике.

Если потенциальная энергия взаимодействия молекул равна нулю, то внутренняя энергия равна сумме кинетических энергий движения всех молекул газа . Следовательно, при изменении температуры изменяется и внутренняя энергия газа. Подставив в уравнение для энергии уравнение состояния идеального газа, получим, что внутренняя энергия прямо пропорциональная произведению давления газа на объем. . Внутренняя энергия тела может изменяться только при взаимодействии с другими телам. При механическом взаимодействии тел (макроскопическом взаимодействии) мерой передаваемой энергии является работа А. При теплообмене (микроскопическом взаимодействии) мерой передаваемой энергии является количество теплоты Q. В неизолированной термодинамической системе изменение внутренней энергии D U равно сумме переданного количества теплоты Q и работы внешних сил А. Вместо работы А, совершаемой внешними силами, удобнее рассматривать работу А`, совершаемую системой над внешними телами. А=-А`. Тогда первый закон термодинамики выражается как, или же. Это означает, что любая машина может совершать работу над внешними телами только за счет получения извне количества теплоты Q или уменьшения внутренней энергии D U. Этот закон исключает создание вечного двигателя первого рода.

28. Количество теплоты. Удельная теплоемкость вещества. Закон сохранения энергии в тепловых процессах (первый закон термодинамики).

Процесс передачи теплоты от одного тела к другому без совершения работы называют теплообменом. Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики. Внутренняя энергия тела пропорциональна массе тела и его температуре, следовательно . Величина с называется удельной теплоемкостью, единица — . Удельная теплоемкость показывает, какое количество теплоты необходимо передать для нагревания 1 кг вещества на 1 градус. Удельная теплоемкость не является однозначной характеристикой, и зависит от работы, совершаемой телом при теплопередаче.

При осуществлении теплообмена между двумя телами в условиях равенства нулю работы внешних сил и в тепловой изоляции от других тел, по закону сохранения энергии . Если изменение внутренней энергии не сопровождается работой, то , или же , откуда . Это уравнение называется уравнением теплового баланса.

29. Применение первого закона термодинамики к изопроцессам. Адиабатный процесс. Необратимость тепловых процессов.

Одним из основных процессов, совершающих работу в большинстве машин, является процесс расширения газа с совершением работы. Если при изобарном расширении газа от объема V1до объема V2 перемещение поршня цилиндра составило l, то работа A совершенная газом равна , или же . Если сравнить площади под изобарой и изотермой, являющиеся работами, можно сделать вывод, что при одинаковом расширении газа при одинаковом начальном давлении в случае изотермического процесса будет совершено меньше количество работы. Кроме изобарного, изохорного и изотермического процессов существует т.н. адиабатный процесс. Адиабатным называется процесс, происходящий при условии отсутствия теплообмена. Близким к адиабатному может считаться процесс быстрого расширения или сжатия газа. При этом процессе работа совершается за счет изменения внутренней энергии, т. е. , поэтому при адиабатном процессе температура понижается. Поскольку при адиабатном сжатии газа температура газа повышается, то давление газа с уменьшением объема растет быстрее, чем при изотермическом процессе.

Процессы теплопередачи самопроизвольно осуществляются только в одном направлении. Всегда передача тепла происходит к более холодному телу. Второй закон термодинамики гласит, что неосуществим термодинамический процесс, в результате которого происходила бы передача тепла от одного тела к другому, более горячему, без каких-либо других изменений. Этот закон исключает создание вечного двигателя второго рода.

30. Принцип действия тепловых двигателей. КПД теплового двигателя.

Обычно в тепловых машинах работа совершается расширяющимся газом. Газ, совершающий работу при расширении, называется рабочим телом. Расширение газа происходит в результате повышения его температуры и давления при нагревании. Устройство, от которого рабочее тело получает количество теплоты Q называется нагревателем. Устройство, которому машина отдает тепло после совершения рабочего хода, называется холодильником. Сначала изохорически растет давление, изобарически расширяется, изохорически охлаждается, изобарически сжимается. <рисунок с подъемником>. В результате совершения рабочего цикла газ возвращается в начальное состояние, его внутренняя энергия принимает исходное значение. Это значит, что . Согласно первому закону термодинамики, . Работа, совершаемая телом за цикл, равна Q. Количество теплоты, полученное телом за цикл, равно разности полученного от нагревателя и отданного холодильнику. Следовательно, . Коэффициентом полезного действия машины называется отношение полезно использованной к затраченной энергии .

31. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха.

Неравномерное распределение кинетической энергии теплового движения приводит к тому. Что при любой температуре кинетическая энергия некоторой части молекул может превысить потенциальную энергию связи с остальными. Испарением называется процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы. Испарение сопровождается охлаждением, т.к. более быстрые молекулы покидают жидкость. Испарение жидкости в закрытом сосуда при неизменной температуре приводит к увеличению концентрации молекул в газообразном состоянии. Через некоторое время наступает равновесие между количеством испаряющихся молекул и возвращающихся в жидкость. Газообразное вещество, находящееся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным. Давление насыщенного пара не зависит при постоянной температуре от объема (из ). При постоянной концентрации молекул давление насыщенного пара растет быстрее, чем давление идеального газа, т.к. под действием температуры количество молекул увеличивается. Отношение давления водяного пара при данной температуре к давлению насыщенного пара при той же температуре, выраженное в процентах, называется относительной влажностью воздуха . Чем ниже температура, тем меньше давление насыщенного пара, таким образом при охлаждении до некоторой температуры пар становится насыщенным. Эта температура называется точкой росы tp.

32. Кристаллические и аморфные тела. Механические свойства твердых тел. Упругие деформации.

Аморфными называются тела, физические свойства которых одинаковы по всем направлениям (изотропные тела). Изотропность физических свойств объясняется хаотичностью расположения молекул. Твердые тела, в которых молекулы упорядочены, называются кристаллами. Физические свойства кристаллических тел неодинаковы в различных направлениях (анизотропные тела). Анизотропия свойств кристаллов объясняется тем, что при упорядоченной структуре силы взаимодействия неодинаковы по различным направлениям. Внешнее механическое воздействие на тело вызывает смещение атомов из положения равновесия, что приводит к изменению формы и объема тела — деформации. Деформацию можно охарактеризовать абсолютным удлинением, равным разности длин до и после деформации, или относительным удлинением . При деформации тела возникают силы упругости. Физическая величина, равная отношению модуля силы упругости к площади сечения тела называется механическим напряжением . При малых деформациях напряжение прямо пропорционально относительному удлинению . Коэффициент пропорциональности Е в уравнении называется модулем упругости (модулем Юнга). Модуль упругости является постоянной для данного материала , откуда . Потенциальная энергия деформированного тела равна работе, затраченной на растяжение или сжатие. Отсюда .

Закон Гука выполняется только при небольших деформациях. Максимальное напряжение, при котором он еще выполняется, называется пределом пропорциональности. За этим пределом напряжение перестает расти пропорционально. До некоторого уровня напряжение деформированное тело восстановит свои размеры после снятия нагрузки. Эта точка называется пределом упругости тела. При превышении предела упругости начинается пластическая деформация, при которой тело не восстанавливает свою прежнюю форму. В области пластической деформации напряжение почти не увеличивается. Это явление называется текучестью материала. За пределом текучести напряжение повышается до точки, называемой пределом прочности, после которой напряжение уменьшается вплоть до разрушения тела.