Гамма-излучение

Гамма-излучение и его свойства

Гамма-излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l < 10 -10 м и вследствие этого — ярко выраженными корпускулярными свойствами, т. е. является потоком частиц — g-квантов, или фотонов, с энергией hn(n — частота излучения, h — постоянная Планка). На шкале электромагнитных волн гамма-излучение граничит с жестким рентгеновским излучением, занимая область более высоких частот.

Экспериментально установлено, что g-излучение не является самостоятельным видом радиоактивности. Оно сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. п.

Сопровождающее распад радиоактивных ядер, гамма-излучение, испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или в основное. Энергия g-кванта равна разности энергий De состояний, между которыми происходит переход.

Возбужденное состояние

Е2

Основное состояние ядра Е1

Испускание ядром g-кванта не ведет к изменению атомного номера или массового числа. Ширина линий гамма-излучения очень мала (~10-2 эВ). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т. е. состоит из ряда дискретных линий. При помощи исследования спектров гамма-излучения можно установить энергии возбужденных состояний ядер. Гамма-кванты больших энергий испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося p0— мезона возникает гамма-излучение с энергией ~70 МэВ. Гамма-излучение при распаде элементарных частиц также обладает линейчатым спектром. Однако распадающиеся элементарные частицы очень часто движутся со скоростями, равными, примерно, скорости света, вследствие чего возникает доплеровское уширение спектральных линий и спектр гамма-излучения оказывается размытым в широком интервале энергий. Возникающее при прохождении быстрых заряженных частиц через вещество, гамма-излучение вызывается их торможением в кулоновском поле атомных ядер вещества. Тормозное гамма-излучение, также как и тормозное рентгеновское излучение, характеризуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма-излучение с максимальной энергией, достигающей несколько десятков ГэВ.

В межзвёздном пространстве гамма-излучение возникает в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

Подобное явление встречается и на Земле при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в g-квант. Можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью (например, проходит через слой свинца толщиной 5 см). Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. Фотоэффект — это процесс, при котором атом поглощает гамма-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома. То освобождающееся место заполняется электронами из вышележащих оболочек. И фотоэффект сопровождается характеристическим рентгеновским излучением. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии g-квантов (~ 100 кэВ) на тяжелых элементах (Pb, U).

При комптон-эффект происходит рассеяние g-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте g-квант не исчезает, а лишь изменяет энергию (длину волны) и направление распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение — более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1 см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышающих энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 МэВ. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

При энергии гамма-кванта > 10 МэВ основным процессом взаимодействия гамма-излучения в любом веществе является образование электронно-позитронных пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hn. Поэтому при hn ~10 МэВ основным процессом в любом веществе оказывается образование пар.