Проблемы проектирования и создания систем электроснабжения для крупных космических станций

Никель-водородные батарей были выбраны для космических платформ, так как они более надежны, чем топливные элементы, и при этом на 50% легче, чем никель-кадмиевые батареи. В настоящее время никель-водородные батареи используются на геостационарных орбитах. Но что на низкой орбите, где будет располагаться космическая станция, они будут испытывать гораздо больше циклов заряда-разряда в год. Проведенные испытания показали, что время работы никель- водородных батарей на низкой околоземной орбите составляет около пяти лет.

Несмотря на то, что фотоэлектронные источники широко используются в космосе, солнечные динамические энергоустановки оказались более эффективными и менее дорогими. Принцип работы солнечных динамических установок заключается в следующем: солнечные лучи фокусируются параболическим отражателем на приемнике, который нагревает рабочее тело, приводящее в действие двигатель или турбину.

Затем механическая энергия преобразуется генератором в электрическую. Для накопления термической энергии используется соль, которая расплавливается в приемнике.

Во время затемнения соль остывает и отдает тепло для расширения рабочего тела. Отражатель состоит из изогнутых треуголных пластин, с зеркальной поверхностью, установленных на гексогональных конструкциях соединенных 14-ти футовыми штангами с космической платформой.

Эффективность солнечной динамической энергоустановки составляет 20−30%; для сравнения, эффективность кремниевых фотоэлементов составляет 14%.

Эффективность термического накопителя более 90%, аккоммуляторных батарей — 70−80%, топливных элементов — 55%. Более высокая эффективность позволяет уменьшить площадь собирателя солнечной энергии, что облегчает решение проблем динамики станции. Меньшее лобовое сопротивление особенно важно при размещении станции на низкой высоте — при том же расходе топлива и на той же орбите увеличивается время жизни станции.

Несмотря на то, что в настоящее время солнечные динамические энергоустановки еще не используются в космосе, уже существует мощная технологическая база, разработанная для применения в наземных и аэровоздушных условиях. В качестве рабочего тела применяют толиен (органический цикл Ранкина с температурой подачи в турбину 750F) или гелий-ксенон (цикл Брайтона с температурой подачи в турбину 1300F). Установки с органическим циклом Ранкина мощностью от нескольких киловатт до нескольких сотен киловатт используются в наземных условиях. Установки с циклом Брайтона используются для электроснабжения систем управления газовых турбин; многие из них имеют тысячи часов наработки.

В программе НАСА 1960 г. была испытана установка с рабочим циклом Брайтона, которая тестировалась 50,000 часов. Эта же установка затем была успешно испытана в вакуумной камере.