Движения. Преобразования фигур

Таким образом, точки A', B', C' лежат на одной прямой, и именно точка B' лежит между A' и C'.

Из данного свойства следуют также еще несколько свойств:

Свойство 2. Образом отрезка при движении является отрезок.

Свойство 3. Образом прямой при движении является прямая, а образом луча — луч.

Свойство 4. При движении образом треугольника является равный ему треугольник, образом плоскости — плоскость, причем параллельные плоскости отображаются на параллельные плоскости, образом полуплоскости — полуплоскость.

Свойство 5. При движении образом тетраэдра является тетраэдр, образом пространства — все пространство, образом полупространства — полупространство.

Свойство 6. При движении углы сохраняются, т. е. всякий угол отображается на угол того же вида и той же величины. Аналогичное верно и для двугранных углов.

Сначала я рассмотрю все основные виды движений, а затем сведу их в единую систему.

4. Параллельный перенос.

Определение. Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т. е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X' и Y', что XX' = YY'.

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т. е. X’Y' = XY.

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос.

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос.

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A' переходит данная точка A, то этот перенос задан вектором AA', и это означает, что все точки смещаются на один и тот же вектор, т. е. XX' = AA' для всех точек Х.

5. Центральная симметрия.

Определение

1. Точки A и A' называются симметричными относительно точки О, если точки A, A', O лежат на одной прямой и OX = OX'. Точка О считается симметричной сама себе (относительно О).

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно.

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной.

Определение

2. Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О.

Основное свойство: Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X' и Y', что X’Y' = -XY.

Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X' и Y'. Тогда, как ясно из определения центральной симметрии, OX' = -OX, OY' = -OY.

Вместе с тем XY = OY — OX, X’Y' = OY' - OX'.

Поэтому имеем: X’Y' = -OY + OX = -XY.

Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия.

Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка, А отображается на А', то центр симметрии это середина отрезка AA'.