Билеты по геометрии

Билет № 4.

Параллельные плоскости.

Две плоскости называются параллельными, если они не пересекаются.

Теорема 16.4: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство: пусть a и b — данные плоскости, а1и а2 — прямые в плоскости a , пересекающиеся в точке А, в1 и в2 — соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, т. е. пересекаются по некоторой прямой с. По теореме 16.3 прямые а1 и а2, как параллельные прямым в1 и в2, параллельны плоскости b, и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости a через точку А проходят две прямые (а1 и а2), параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Вывод формулы объема пирамиды.

Билет № 5.

Теорема об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. Действительно, согласно определению параллельные прямые — это прямые, которые лежат в одной плоскости и не пересекаются. Наши прямые лежат в одной плоскости — секущей плоскости. Они не пересекаются, так как не пересекаются содержащие их параллельные плоскости. Значит, прямые параллельны. ЧТД.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны. Действительно, пусть a и b — параллельные плоскости, а и в — пересекающие их параллельные прямые, А1, А2, и В1, В2 — точки пересечения прямых с плоскостями (см рисунок). Проведем через прямые, а и в плоскость. Она пересекает плоскости a и b по параллельным прямым А1В1 и А2В2. Четырехугольник А1В1В2А2 — параллелограмм, т.к. у него противолежащие стороны параллельны. А у параллелограмма противолежащие стороны равны. Значит А1А21В2. ЧТД.

Касательная плоскость — плоскость, проходящая через точку, А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А.

Теорема 20.5: касательная плоскость имеет с шаром только одну общую точку — точку касания.

Доказательство: пусть a — плоскость, касательная к шару, и, А — точка касания. Возьмем произвольную точку Х плоскости a, отличную от А. Так как ОА — перпендикуляр, а ОХ — наклонная, то ОХ>ОА=R. Следовательно точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку, то касательная прямая тоже имеет с шаром только одну общую точку — точку касания.

Билет № 6.

Прямая, перпендикулярная плоскости.

Две прямые называются перпендикулярными, если угол между ними равен 900. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.

Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.

Теорема 17.2: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Доказательство:

Площадь боковой поверхности пирамиды.

Теорема 19.6: боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Билет № 7.

Теорема о трех перпендикулярах.

Теорема 17.5: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

Доказательство: пусть АВ — перпендикуляр к плоскости a, АС — наклонная и с — прямая в плоскости a, проходящая через основание С наклонной. Проведем прямую СА1, параллельную прямой АВ. Она перпендикулярна плоскости a. Проведем через прямые АВ и А1С плоскость b. Прямая с перпендикулярна прямой СА1. Если она перпендикулярна прямой СВ, то она перпендикулярна плоскости b, а значит, и прямой АС. Аналогично если прямая с перпендикулярна наклонной СА, то она, будучи перпендикулярна и прямой СА1, перпендикулярна плоскости b, а значит, и проекции наклонной ВС. ЧТД.

Вывод формулы объема шара.

Билет № 8.

Перпендикулярные плоскости.

Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема 17.6: если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство: пусть a — плоскость, в — перпендикулярная ей прямая, b — плоскость, проходящая через прямую в, с- прямая, по которой пересекаются плоскости a и b. Докажем, что плоскости a и b перпендикулярны. Проведем в плоскости a через точку пересечения прямой в с плоскостью a прямую а, перпендикулярную прямой с. Проведем через прямые, а и в плоскость g. Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым, а и в. Т.к. прямые, а и в перпендикулярны, то плоскости a и b перпендикулярны. ЧТД.

Призма — многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников.

Прямая призма — боковые ребра призмы перпендикулярны основаниям.

Боковая поверхность призмы (площадь боковой поверхности) — сумма площадей боковых граней.

Теорема 19.1: боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство: боковые грани прямой призмы — прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна…

задача о боковой поверхности наклонной призмы: боковая поверхность наклонной призмы равна произведению периметра перпендикулярного сечения и бокового ребра.

Билет № 9.

Теорема о двух прямых, перпендикулярных плоскости.

Теорема 17.4: две прямые, перпендикулярные одной и той же плоскости, параллельны.

Доказательство: пусть, а и в — две прямые, перпендикулярные плоскости a. Допустим, что прямые, а и в не параллельны. Тогда существует некая прямая в1 параллельная а. Выберем на прямой в точку С, не лежащую в плоскости a. Проведем через точку С прямую в1, параллельную а. Прямая в1 перпендикулярна плоскости a (теорема 17.3). пусть В и В1 — точки пересечения прямых в и в1 с плоскостью a. Тогда прямая ВВ1 перпендикулярна пересекающимся прямым в и в1. А это невозможно. Мы пришли к противоречию. ЧТД.

Прямоугольный параллелепипед — параллелепипед, у которого основанием является прямоугольник. У прямоугольного параллелепипеда все грани — прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями).

Теорема 19.4: в прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Доказательство:

Билет № 10.

Теорема 17.3: если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Доказательство: пусть а1 и а2 — две параллельные прямые и a — плоскость, перпендикулярная прямой а1. Докажем, что эта плоскость перпендикулярна и прямой а2. Проведем через точку А2 пересечения прямой а2 с плоскостью a произвольную прямую х2 в плоскости a. Проведем в плоскости a через точку А1 пересечения прямой а1 с a прямую х1, параллельную прямой х2. Так как прямая а1 перпендикулярна плоскости a, то прямые а1 их1 перпендикулярны. По теореме 17.1(если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны) параллельные им пересекающиеся прямые а2 и х2 тоже перпендикулярны. Таким образом, прямая а2 перпендикулярна любой прямой х2 в плоскости a. А это значит, что прямая а2 перпендикулярна плоскости a .

Теорема о противолежащих гранях параллелепипеда.