Экстремумы функций

Смысл какого-нибудь максимума или минимума.

Л.Эйлер.

В математике изучение задач на нахождение максимума и минимума началось очень давно. Но только лишь в эпоху формирования математического анализа были созданы первые методы решения и исследования задач на экстремум.

Потребности практической жизни, особенно в области экономики и техники, в последнее время выдвинули такие новые задачи, которые старыми методами решить не удавалось. Надо было идти дальше.

Потребности техники, в частности космической, выдвинули серию задач, которые также не поддавались средствам вариационного исчисления. Необходимость решать их привела к созданию новой теории, получившей название теории оптимального управления. Основной метод в теории оптимально управления был разработан в пятидесятые — шестидесятые годы советскими математиками — Л.С. Понтрягиным и его учениками. Это привело к тому, что теория экстремальных задач получила новый мощный толчок к дальнейшим исследованиям.

Цель дипломного проекта — рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.

Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос — можно ли ввести рассмотрение этой темы в старших классах школы — ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения.

В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы — функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.

2.Историческая справка.

В жизни постоянно приходится сталкиваться с необходимостью принять наилучшее возможное (иногда говорят — оптимальное) решение. Огромное число подобных проблем возникает в экономике и технике. При этом часто случается так, что полезно прибегнуть к математике.

В математике исследование задач на максимум и минимум началось очень давно — двадцать пять веков назад, Долгое время к задачам на отыскание экстремумов не было сколько — нибудь единых подходов. Но примерно триста лет назад — в эпоху формирования математического анализа — были созданы первые общие методы решения и исследования задач на экстремум.

Накопление методов дифференциального исчисления приняло наиболее явную форму у Ферма. В 1638 году он сообщил в письме Декарту, что решил задачу определения экстремальных значений функции f (x). Ферма составлял уравнение (f (x+h)-f (x))/h=0 и после преобразований в левой части полагал h=0, вопреки мнению позднейших исследователей, которые видели в этой идеи исчисления бесконечно малых. В действительности, Ферма нашел это условие и аналогичное (f (y)-f (x))/(y-x)=0 при y=x ещё алгебраическими путями.

Рассуждения при нахождении экстремума функции f (x) следующие. Пусть для некоторого x функция достигает максимума. Тогда f (x h)<f (x);f (x) Ph Qh2 …<f (x). Вычитаем из обеих частей и делим на h, откуда P Qh …<0.Так как h можно выбрать любой малости, член P будет по модулю больше суммы всех остальных членов. Неравенство поэтому возможно лишь при условии P=0, что и дает условие Ферма. В случае минимума рассуждения аналогичные. Ферма знал также, что знак Q определяет характер экстремума.

К сожалению, Ферма не стремился публиковать свои работы, кроме того, пользовался труднодоступными для усвоения алгебраическими средствами Виета с его громоздкой символикой. Видимо, поэтому он не сделал последнего, уже небольшого, шага на пути к созданию дифференциального исчисления.

Накопление фактов дифференциального исчисления происходило быстро. В «Дифференциальном исчислении» (1755) Эйлера это исчисление появляется уже в весьма полном виде.

Правила определения экстремумов функции одной переменной y=f (x) были даны Маклореном. Эйлер разработал этот вопрос для функции двух переменных. Лагранж показал (1789), как отличать вид условного экстремума для функции многих переменных.

В XVIII веке возникло исчисление вариаций. В трудах Эйлера и Лагранжа оно приобрело вид логически стройной математической теории. Главной задачей, решаемой средствами этого исчисления, являются отыскание экстремумов функционалов.

3.Экстремумы функций одной переменной.

3.1.Необходимое условие.

Пусть функция f (x), определенная и непрерывная в промежутке [a, b], не является в нем монотонной. Найдутся такие части [, ] промежутка [a, b], в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т. е. между и .

Говорят, что функция f (x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x0— , x0+), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.

f (x) < f (x0)(или f (x)>f (x0))

Иными словами, точка x0 доставляет функции f (x) максимум (минимум), если значение f (x0) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x0.

Если существует такая окрестность, в пределах которой (при x=x0) выполняется строгое неравенство

f (x)<f (x0)(или f (x)>f (x0)

то говорят, что функция имеет в точке x0 собственный максимум (минимум), в противном случае — несобственный.

Если функция имеет максимумы в точках x0 и x1, то, применяя к промежутку [x0, x1] вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x2 между x0 и x1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике — важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.

Заметим, что для обозначения максимума или минимума существует и объединяющий их термин — экстремум.