Линейная зависимость векторов

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.

Пусть задана система векторов а1, а2, а3,…, ал (1) одной размерности.

Определение: система векторов (1) называется линейно-независимой, если равенство a1а1+a2а2+…+aлал=0 (2) выполняется лишь в том случае, когда все числа a1, a2,…, aл=0 и ÎR

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a0 (i=1,…, k)

Свойства

  1. Если система векторов содержит нулевой вектор, то она линейно зависима
  2. Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.
  3. Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.
  4. Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.

Теорема: Если заданы два вектора a и b, причем а¹0 и эти векторы коллинеарны, то найдется такое действительное число g, что b=ga.

Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.

Доказательство: достаточность. Т.к. векторы коллинеарны, то b=ga. Будем считать, что а, b¹0 (если нет, то система линейно-зависима по 1 свойству). 1b-ga=0. Т.к. коэфф. При b¹0, то система линейно зависима по определению. Необходимость. Пусть, а и b линейно-зависимы. aа+bb=0, a¹0. а= -b/a*b. а и b коллинеарны по определению умножения вектора на число.

Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.

Дано: a, b, c — линейно-зависимы. Доказать: a, b, c — компланарны. Доказательство: т.к. векторы линейно-зависимы, то aа+bb+gc=0, g¹0. с= - a/g*а — b/g*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.

1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.

В множестве векторов на прямой базис состоит из одного ненулевого вектора.

В качестве базиса множества векторов на плоскости можно взять произвольную пару.

В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.

2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.

Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.

(а, b)=|a| |b| cos u, u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц.

Свойства:

  1. (а, b)= (b, а)
  2. (aа, b)= a (а, b)
  3. (а+b, с)= (а, с)+ (b, с)
  4. (а, а)=|a|2 — скал.квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0.

Определение: вектор называется нормированным, если его скал.кв.равен 1.

Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.

Теорема: Если векторы, а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.

Найдем формулу угла между векторами по определению скалярного произведения. cos u=a, b/|a||b|=x1x2+y1y2+z1z2/sqrt (x12+y12+z12)*sqrt (x22+y22+z22)

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: векторным произведением двух векторов a и b обозначаемым [a, b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с, а)=0 и (с, b)=0. 3. а, b, с образуют правую тройку.

Свойства:

  1. [a, b]= - [b, a]
  2. [aа, b]= a [а, b]
  3. [a+b, c]=[a, c]+[b, c]
  4. [a, a]=0

Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.

Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.

Теорема: Пусть векторы, а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй — координаты первого вектора, в третьей — координаты второго.

Определение: ортой вектора, а называется вектор ед. длины имеющий одинаковое направление с вектором а. ea=a/|a|

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.

1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9. Угол между пр.

  1. Ах+By+C=0 (1), где A, B одновр. не равны нулю.
  2. Теорема: n (A, B) ортоганален прямой заданной ур-ем (1).

    Доказательство: подставим коорд. т. М0 в ур-е (1) и получим Ах0+By0+C=0 (1'). Вычтем (1)-(1') получим А (х-х0)+B (y-y0)=0, n (A, B), М0М (х-х0, y-y0). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M0M ортоганальны. Т.о. n ортоганлен прямой. Вектор n (A, B) называется нормальным вектором прямой.

    Замечание: пусть ур-я А1х+B1y+C1=0 и А2х+B2y+C2=0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А1=t*А2 и т.д.

    Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным.

    1. С=0, Ах+By=0 — проходит ч/з (0,0)

    2. С=0, А=0, By=0, значит у=0

    3. С=0, B=0, Ах=0, значит х=0

    4. А=0, By+C=0, паралл. ОХ

    5. B=0, Ах+C=0, паралл. OY

  3. x/a+y/b=1.
  4. Геом.смысл: прямая отсекает на осях координат отрезки, а и b

  5. x-x1/e=y-y1/m
  6. Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M1М (х-х1; y-y1)

  7. x-x1/x2-x1=y-y1/y2-y1
  8. Пусть на прямой даны две точки М1(x1;y1) и М2(x2;y2). Т.к. на прямой заданы две точки, то задан направляющий вектор q (x2-x1; y2-y1)

  9. y=kb+b.
  10. u — угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u

    Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1/e/e=y-y1/m/e. y-y1=k (x-x1) при y1-kx1=b, y=kx+b

  11. xcosq+ysinq-P=0

q - угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой, если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n (cosq, sinq). Пусть М (x, y) — произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

xcosq+ysinq-P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2q=(A*t)2

Sin2q=(B*t)2

-p=C*t

cos2q+sin2q=t2(A2+B2), t2=1/A2+B2, t=±sqrt (1/ A2+B2). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

7. Система: x=et+x1 и y=mt+y1

НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.

1. xcosq+ysinq-P=0

q - угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой, если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n (cosq, sinq). Пусть М (x, y) — произв. точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

xcosq+ysinq-P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2q=(A*t)2

Sin2q=(B*t)2

-p=C*t

cos2q+sin2q=t2(A2+B2), t2=1/A2+B2, t=±sqrt (1/ A2+B2). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.

2. Обозначим d — расстояние от точки до прямой, а ч/з б — отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону.

Теорема: Пусть задано нормальное уравнение прямой xcosq+ysinq-P=0 и М1(x1;y1), тогда отклонение точки М1 = x1cosq+y1sinq-P=0

Задача: найти расстояние от точки М0(x0;y0) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x0cosq+y0sinq-P|. d=|Ах0+By0+C|/sqrt (A2+B2)

ГИПЕРБОЛА.

Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная

Каноническое уравнение:

Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1F2|=2c, М — произвольная точка гиперболы. r1, r2 — расстояния от М до фокусов; |r2-r1|=2a; a<c;

,

x2c2-2a2xc+a2=a2(x2-2xc+c2+y2)

x2(c2-a2)-a2y2=a2(c2-a2)

c2-a2=b2

x2b2-a2y2=a2b2

 — каноническое ур-е гиперболы

ПАРАБОЛА.

Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой.

Каноническое уравнение:

Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.

|DF|=p, М — произвольная точка параболы; К — точка на директрисе; МF=r; MK=d;

r=sqrt ((x-p/2)2+y2); d=p/2+x

Приравниваем и получаем:

y2=2px - каноническое уравнение параболы

ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.

1. Определение: эксцентриситет — величина равная отношению с к а.

е=с/а

е эллипсв <1 (т.к. а>c)

е гиперболы >1 (т.к. с>a)

Определение: окружность — эллипс у которого а=b, с=0, е=0.

Выразим эксцентриситеты через, а и b:

е эллипса является мерой его «вытянутости»

е гиперболы характеризует угол раствора между асимптотами

2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости a перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a)

D1: x= - a/e

D2: x= a/e

р=а (1-е2)/е — для эллипса

р=а (е2-1)/е — для гиперболы

ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы).

Доказательство: для эллипса.

r1/d1=e

x£|a|, xe+a>0

r1=xe+a

d1 — расстояние от М (x, y) до прямой D1

xcos180+ysin180-p=0

x=-p

x=-a/e

бм=-x-a/e

d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.)

Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1.

ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Пусть задан эллипс, парабола или правая ветвь гиперболы.