Неметаллы

§ 2. Общие химические свойства неметаллов.

Оксиды неметаллов относят к кислотным оксидам, которым соответствуют кислоты. С водородом неметаллы образуют газообразные соединения (например HCl, H2S, NH3). Водные растворы некоторых из них (например, галогеноводородов) — сильные кислоты. С металлами типичные неметаллы дают соединения с ионной связью (например, NaCl). Неметаллы могут при определенных условиях между собой реагировать, образуя соединения с ковалентной полярной (H2O, HCl) и неполярной связями (CO2).

С водородом неметаллы образуют летучие соединения, как, например, фтороводород HF, сероводород H2S, аммиак NH3, метан CH4. При растворении в воде водородные соединения галогенов, серы, селена и теллура образуют кислоты той же формулы, что и сами водородные соединения: HF, HCl, HCl, HBr, HI, H2S, H2Se, H2Te.

При растворении в воде аммиака образуются аммиачная вода, обычно обозначаемая формулой NH4OH и называемая гидроксидом аммония. Ее также обозначают формулой NH3 • H2O и называют гидратом аммиака.

С кислородом неметаллы образуют кислотные оксиды. В одних оксидах они проявляют максимальную степень окисления, равную номеру группы (например, SO2, N2O5), а других — более низкую (например, SO2, N2O3). Кислотным оксидам соответствуют кислоты, причем из двух кислородных кислот одного неметалла сильнее та, в которой он проявляет более высокую степень окисления. Например, азотная кислота HNO3 сильнее азотистой HNO2, а серная кислотаH2SO4 сильнее сернистой H2SO3.

§ 3. Строение и свойства простых веществ — неметаллов.

Самые типичные неметаллы имеют молекулярное строение, а менее типичные — немолекулярное. Этим и объясняется отличие их свойств. Наглядно это отражено в схеме № 2.

Простые вещества

С немолекулярным строением

С молекулярным строением

C, B, Si

F2, O2, Cl2, Br2, N2, I2, S8

У этих неметаллов атомные кристаллические решетки, поэтому они обладают большой твердостью и очень высокими температурами плавления.

У этих неметаллов в твердом состоянии молекулярные кристаллические решетки. При обычных условиях это газы, жидкости или твердые вещества с низкими температурами плавления.

Таблица № 2

Кристаллический бор В (как и кристаллический кремний) обладает очень высокой температурой плавления (2075°С) и большой твердостью. Электрическая проводимость бора с повышением температуры сильно увеличивается, что дает возможность широко применять его в полупроводниковой технике. Добавка бора к стали и к сплавам алюминия, меди, никеля и др. улучшает их механические свойства.

Бориды (соединения бора с некоторыми металлами, например с титаном: TiB, TiB2) необходимы при изготовлении деталей реактивных двигателей, лопаток газовых турбин.

Как видно из схемы № 2, углерод С, кремний Si, бор В имеют сходное строение и обладают некоторыми общими свойствами. Как простые вещества они встречаются в двух видоизменениях — в кристаллическом и аморфном. Кристаллические видоизменения этих элементов очень твердые, с высокими температурами плавления. Кристаллический кремний обладает полупроводниковыми свойствами.