Разработка "высоковольтного драйвера" газоразрядного экрана на полиимидном носителе
Высоковольтный драйвер газоразрядного экрана на полиимидном носителе: основные этапы разработки.
Содержание:
- Введение
- Исследовательский этап разработки
- Анализ научно-технической информации по сварным узлам лепестковых выводов бескорпусных БИС.
- Оценка напряжений в сварных соединениях бескорпусных БИС.
- Конструктивное исполнение сварных узлов.
- Технологические рекомендации по выполнению сварных узлов бескорпусных БИС.
- Технологический этап разработки
- Анализ существующих методов сборки БИС.
- Проволочные методы сборки БИС.
- Технология сборки методом перевернутого кристалла [ flip-chip].
- Современные конструкции гибких носителей для монтажа БИС.
- Метод переноса объемных выводов.
- Разработка технологического процесса сборки высоковольтного драйвера газоразрядного экрана на полиимидном носителе.
- Общие сведения.
- Конструкторско-технологические ограничения на разработку полиимидного носителя.
- Приложение
1. Введение.
Одной из важнейших задач схемотехнического проектирования можно назвать разработку быстродействующих и надежных схем, которые способны устойчиво работать при низких уровнях мощности и при условии наличия сильных паразитных связей, а также ограниченных по точности и стабильности параметров элементов. Для этого необходимы как минимум малая допустимая мощность рассеивания и высокая плотность упаковки. На современном этапе развития основополагающей идеей микроэлектроники является конструктивная интеграция элементов электронной схемы, что объективно приводит к интеграции схемотехнических, конструкторских и технологических решений. Подобная интеграция находит своё выражение в тесной взаимосвязи и взаимообусловленности всех этапов проектирования интегральной микросхемы. При этом главным связующим звеном всех этапов проектирования является задача обеспечения высокой надежности ИМС, а потенциальная возможность непосредственно на этом этапе проектирования оценивается с учетом возможностей выбранного структурно технологического варианта ИМС и его технологической реализации.
На проектном уровне конструктор, стремясь сохранить быстродействие и надежность ИМС, определяет оптимальную технологию, выбирает материалы и технологические методы, обеспечивающие надежные электротехнические соединения, а также защиту от окружающей среды и механических воздействий с учетом технологических возможностей и ограничений. При технологическом проектировании синтезируется оптимальная структура технологического процесса обработки и сборки, позволяющая максимально использовать отработанные, типовые процессы и обеспечивать высокую воспроизводимость, минимальную трудоемкость и стоимость с учетом конструкторских требований. Важным этапом технологического проектирования, направленного на обеспечение качества и надежности ИМС, является разработка операций контроля на всех этапах производства ИМС: — входного контроля основных и вспомогательных материалов и комплектующих изделий
— контроля в процессе обработки
— межоперационного контроля полуфабрикатов
— выходного контроля готовых изделий
Как показала практика, рост степени интеграции и функциональной насыщенности единицы объема изделий микроэлектроники, объективно приводит к микроминитюаризации их исполнения, а проблемы, связанные с микроминитюаризацией, комплексно могут быть решены на базе разработки и внедрения новых конструктивно-технологических принципов сборки ИМС и аппаратуры на их основе.
Вообще, стоит отметить, что к настоящему времени микроэлектроника сформировалась как генеральное схемотехническое и конструктивно-технологическое направление в создании средств вычислительной техники, радиотехники и автоматики.
2. ИССЛЕДОВАТЕЛЬСКИЙ ЭТАП РАЗРАБОТКИ
1.1. Анализ научно-технической информации по сварным узлам лепестковых выводов бескорпусных БИС.
Как показывает анализ научно-технической информации, ведущие зарубежные фирмы считают наиболее перспективным для сборки многовыводных СБИС метод автоматической сборки на ленточном носителе (АСЛН) и активно внедряют его в производство.
Существует два основных варианта этого метода:
— с использованием группового присоединения золотых контактных столбиков на контактных площадках кристаллов к медным многовыводным рамкам на гибком ленточном носителе;
— с использованием присоединения алюминиевых контактных площадок к алюминиевым многовыводным рамкам на ленточном носителе сваркой.
Фирма National (США) применяет метод АСЛП на основе однослойной медной ленты с контактными выступами в то время как японские производители используют в основном первый вариант. Реализация бескорпусных ИС на базе использования гибкого носителя системы выводов типа алюминий-полиимид и медь-диэлектрическая пленка позволяет повысить надежность соединений и устойчивость конструкции в целом к воздействию специальных факторов. анализ надежности бескорпусных БИС на гибком носителе проводился в ряде работ, в том числе и исследования напряженного состояния сварных соединений м сборочных узлов при их монтаже в устройства РЭА.
Непрерывное совершенствование процессов присоединения лепестковых выводов к контактным площадкам кристаллов позволяет создавать схемы с количеством выводов до 500 и более. При этом лепестки монтируются на кристалл с шагом 0.2 мм и менее при ширине лепестка 65−100 мкм. Основной метод присоединения — групповая пайка медных луженых выводов к золотым выступам на кристалле импульсно нагретым инструментом. в меньшей степени используется термокомпрессионная сварка двухслойных золоченых выводов к золотым выступом на кристалле. только в отдельных случаях используются алюминиевые лепестки, привариваемые к алюминиевым контактным площадкам на кристалле.
С целью повышения надежности при монтаже кристаллов со столбиковыми выводами на подложки используют различные конструктивные решения с целью компенсации разницы в коэффициентах термического расширения. Например, при монтаже кристаллов с матричным расположением выводов используют составные столбики припоя, сформированные на полиимидных пленках.