Уравнение Кортевега - де Фриса

Cg=, (1.5)

определяемой через производную от частоты w по волновому числу k.

Определить, с какой (линейной или нелинейной) моделью имеет дело исследователь, не всегда легко, но когда математическая модель сформулирована, то решение этого вопроса упрощается и выполнение принципа суперпозиции решений можно проверить.

Возвращаясь к волнам на воде, заметим, что их можно анализировать используя хорошо известные уравнения гидродинамики, о которых известно, что они нелинейны. Поэтому и волны на воде в общем случае являются нелинейными. Только в предельном случае малых амплитуд эти волны могут считаться линейными.

Отметим, что и распространение звука не во всех случаях описывается линейным уравнением. Еще Рассел при обосновании своих наблюдений по уединенной волне отметил, что звук от выстрела пушки распространяется в воздухе быстрее, чем команда произвести этот выстрел. Это объясняется тем, что распространение мощного звука описывается уже не волновым уравнением, а уравнениями газовой динамики.

  1. Уравнение Кортевега — де Фриса

Окончательная ясность в проблеме, которая возникла после опытов Рассела по уединенной волне, наступила после работы датских ученых Д .Д. Кортевега и Г. де Фриса, которые попытались разобраться в существе наблюдений Рассела. Обобщив метод Рэлея, эти ученые в 1895 году вывели уравнение для описания длинных волн на воде. Кортевег и де Фрис, используя уравнения гидродинамики, рассмотрели отклонение и (х, t) от положения равновесия поверхности воды при отсутствии вихрей и при постоянстве плотности воды. Сделанные ими начальные приближения были естественны. Они также предположили, что при распространении волны выполняются два условия для безразмерных параметров

e =<<1, d =(2.1)

Здесь а — амплитуда волны, h — глубина бассейна, в котором рассматриваются волны, l — длина волны (рис. 1).

Суть приближений состояла в том, что амплитуда рассматриваемых волн была много меньше, чем

Рис. 1. Уединенная волна, распространяющаяся по каналу, и ее параметры

глубина бассейна, но в то же время длина волны была много больше, чем глубина бассейна. Таким образом, Кортевег и де Фрис рассматривали длинные волны.

Уравнение, которое было ими получено, имеет вид

ut + 6uux + uxxx = 0. (2.2)

Здесь u (x, t) — отклонение от положения равновесия поверхности воды (форма волны) — зависит от координаты x и времени t. Индексы у характеристики u означают соответствующие производные по t и по x. Это уравнение, как и (1), является уравнением в частных производных. Изучаемая характеристика у него (в данном случае u) зависит от пространственной координаты x и времени t.

Решить уравнение такого типа — значит найти зависимость u от x и t, после подстановки которой в уравнение мы придем к тождеству.

Уравнение (2.2) имеет волновое решение, известное с конца прошлого века. Оно выражается через специальную эллиптическую функцию, изученную Карлом Якоби, которая носит теперь его имя.

При некоторых условиях эллиптическая функция Якоби переходит в гиперболический секанс и решение имеет вид

u (x, t)=2k2ch-2{k (x-4k2t)+j0}, (2.3)

где j0— произвольная постоянная.

Решение (8) уравнения (7) является предельным случаем бесконечно большого периода волны. Именно этот предельный случай является уединенной волной, соответствующей наблюдению Рассела в 1834 году.