Спонтанное нарушение симметрии

Не только геометрические, свойства, но и вообще все физические явления не зависят от перемещений или поворотов.

Итак, физические законы должны быть инвариантны (неизменны) относительно перемещений и поворотов. Это требование облегчает выводы уравнений физики и придает им более стройный вид.

Еще одна важная симметрия — однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались. Электроны в атомах далеких звезд движутся в том же ритме, что и на Земле. Частота испускаемого ими света такая же, несмотря на то, что свет был испущен миллиарды лет тому назад.

Законы природы не изменяются и от замены направления течения времени на обратное. Это означает, что взгляд назад являет такую же картину, как и взгляд вперед. Так ли это? Нам случалось видеть, как яйцо, упавшее со стола, растекается, но никогда не доводилось наблюдать, как белок и желток собираются обратно в скорлупу и „прыгают“ на стол. И, тем не менее, молекулы в принципе могут случайно так согласовать свои движения, что невероятное свершится. В малом масштабе явления такого рода происходят с большой вероятностью: молекулы в малом объеме газа под влиянием столкновений то стекаются вместе, то растекаются так, что их плотность только в среднем является постоянной.

Глубокий анализ подобных фактов привел физиков к заключению, что „обратимость“ времени существует не только в механике и электродинамике, где она прямо вытекает из уравнений, но и во многих других явлениях природы.

Симметрия, связанная с изменением направления течения времени, — приближенная симметрия. Ее -нарушение наблюдается в слабых распадах некоторых элементарных частиц — нейтральных мезонов. И хотя эти нарушения очень малы, они играют весьма важную роль в физике элементарных частиц, так как приводят к абсолютному различию между частицами и античастицами: К0-мезоны несколько чаще распадаются с испусканием антилептонов — позитронов, антимюонов, чем лептонов — электронов и мюонов. Природа нарушения инвариантности относительно обращения времени пока неизвестна, и даже неясно, какие взаимодействия нарушают эту инвариантность.

Существует, кроме того, зеркальная симметрия — волчок, закрученный направо, ведет себя так же, как закрученный налево, единственная разница в том, что фигуры движения правого волчка будут зеркальным отражением фигур левого.

Существуют зеркально асимметричные молекулы, но, если они образуются в одинаковых условиях, число левых молекул равно числу правых.

Зеркальная симметрия явлений природы неточная, как и большинство других симметрий. В слабых взаимодействиях, ответственных за радиоактивный распад, она нарушается. Даже в явлениях, не связанных с радиоактивными превращениями, влияние слабых взаимодействий приводит к ее небольшому нарушению. Так, в атомах относительная неточность зеркальной симметрии — порядка 10-15. Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3 — 10-8“. В 1978 г. Л. М. Баркову и М., С. Золотареву из Новосибирского научного городка удалось обнаружить это явление.

Важнейшая симметрия, оказавшая влияние на всю современную физику, была обнаружена в начале XX в. Уже Г. Галилей открыл замечательное свойство механических движений: они не зависят оттого, в какой системе координат их изучать, в равномерно движущейся или в неподвижной. Нидерландский физик X. Лоренц в 1904 г. доказал, что таким свойством обладают и электродинамические явления, причем не только для малых скоростей, но и для тел, двигающихся со скоростью, близкой к скорости света. При этом выяснилось, что скорость заряженных тел не может превысить скорости света.