Понятие о центре тяжести

A B C D

рис. 5

Сделаем одно предварительное замечание. На каждой прямой мы можем выбрать положительное направление и единицу масштаба. Если это уже сделано, то прямую иногда называют осью.

Каждый отрезок (скажем, АВ) можно рассматривать как направленный, причём сначала мы называем начало отрезка (А), а затем — его конец (В); направление отрезка — от А к В. Если отрезок лежит на оси (или параллелен ей), то его направление может:

1) совпадать с направлением оси;

2) быть противоположным направлением оси.

В первом случае мы величиной отрезка называем его длину; во втором случае величиной отрезка мы называем его длину, взятую со знаком минус (-).

Таким образом, величина отрезка, лежащего на какой-нибудь оси, или параллельного оси — это его длина, взятая со знаком плюс или минус, в зависимости от того, будут ли направление отрезка и оси одинаковы или противоположны. Величину отрезка АВ будем обозначать так: АВ.

В нашем примере (рис. 5) АВ=3, DC= -2, ВА= -3. Вообще АВ= -ВА.

Вернёмся теперь к вопросу о возможном физическом истолковании материальных точек с произвольными вещественными массами.{220411, 12}

Мы будем представлять, что в пространстве произвольным образом выбрана какая-либо ось l. Материальную точку (А, т) можно наглядно истолковать как силу, параллельную оси l и приложенную к точке А.

Число т («масса») характеризует абсолютную величину (или, как говорят иногда, «напряжение») и направление этой силы: сила и ось одинаково направлены, если т>0, и противоположно направлены, если т<0; по абсолютной величине сила равна ЅтЅ (единицам силы). Если т=0, то сила равна нулю. Материальную точку вида (А, 0) можно назвать «незагруженной точкой» или «нулевой силой».

А

С

В

рис. 6

Когда будем ниже говорить о «центре тяжести нескольких материальных точек», то его можно себе наглядно представлять как центр параллельных сил, а «объединение нескольких материальных точек» — как равнодействующую нескольких параллельных сил, приложенную в центре параллельных сил.

Для геометрических приложений важно, что почти всё основное, что мы говорили относительно материальных точек с положительными массами, возможно обобщить на случай материальных точек с произвольными вещественными массами.

Понятие центра тяжести двух материальных точек (с произвольными вещественными массами) можно ввести так.

Центром тяжести двух материальных точек (А, а) и (B, b) (рис. 6) называется такая точка С, лежащая на оси АВ (положительное направление от А к В), которая удовлетворяет условию: аЧАС=bЧСВ.

А

В

С

рис. 7

Центр тяжести С двух материальных точек (А, а) и (B, b) будет лежать между А и В, лишь если «массы» а и b одного знака. Если а и b разных знаков, то С вне отрезка АВ (рис. 7).

Лишь в одном случае центр тяжести материальных точек (А, а) и (B, b) с различными носителями (А№В) не существует, — именно, когда массы их противоположны по знаку, но не равны по абсолютной величине (то есть, если а = -b № 0). В связи с этим мы будем называть две материальные точки вида (А, а) и (В, -а) (А№В, а№ 0) механической парой.

Этот случай можно себе представить как предельный для того случая, когда а№-b, но а® -b. Если а№-b, а№ 0, b№ 0, то можно написать , т. е. . Если а ® -b, то а + b ® 0 и, следовательно, АС ®Ґ, то есть точка С неограниченно удаляется вдоль прямой АВ.{Z220415} Поэтому иногда говорят, что если a = -b, то центр тяжести двух материальных точек (А, а) и (B, b) «лежит в бесконечно удалённой точке прямой АВ».

Оставаясь здесь в рамках элементарной геометрии, мы будем эту фразу рассматривать как образное выражение того, что центра тяжести в данном случае нет.

Если одна из двух материальных точек является незагруженной, а «масса» другой материальной точки отлична от нуля, то их центр тяжести совпадает с носителем загруженной точки. В связи с этим имеет смысл все незагруженные точки считать равными, то есть считать, что при любых А иВ(А, 0) єє (В, 0).

Задача о нахождении центров тяжести двух незагруженных точек является неопределенной: существует бесконечно много точек, которые можно рассматривать в качестве центров тяжестей этих двух точек. Мы не будем останавливаться на рассмотрении этого случая.

Идея барицентрических координат.

Выберем на плоскости произвольный треугольник АВС (рис. 8), который в дальнейшем назовем координатным, или базисным треугольником Мебиуса. Пусть р№ 0и (Р, р)ѕ произвольная материальная точка, лежащая в плоскости этого треугольника. Тогда возможно подобрать для точек А, В, С такие массы а, b, с (не обязательно положительные), чтобы объединением трех материальных точек (А, а), (В, b) и (С, с) служила точка (Р, р). Это можно себе представить следующим образом.

Ясно, что не может быть одновременно РАЅЅ ВС, РВЅЅ СА, РСЅЅ АВ. Пусть, для определённости, РА и ВС не параллельны. Соединим Р с А и отметим точку А1, в которой АР встречает прямую ВС. Подберём три действительных числа а, b, c так, чтобы

bЧBA1 = cЧA1C,

AP = (b + c) ЧPA1,

a + b + c = p.

Это всегда возможно сделать. Тогда

(P, p) = (A, a) + (B, b) + (C, c).

Обратно, если возьмём три произвольных действительных числа a, b, c, причём a + b + c № 0, то существует вполне определённая материальная точка (Р, р) такая, что (Р, р) = (A, a) + (B, b) + (C, c).

Таким образом, каждую материальную точку Рє(Р, р) на плоскости можно вполне охарактеризовать тремя числами, а именно тремя массами a, b и с, которые надо поместить в вершинах базисного треугольника, чтобы точка Р оказалась объединением трёх образующихся при этом материальных точек (A, a), (B, b) и (C, c). Эти три числа называют барицентрическими координатами материальной точки Р («барицентр» означает «центр тяжести»): а — первая барицентрическая координата, b — вторая, с — третья. Понятно, что те же три числа a, b, c определяют также положение носителя материальной точки Р. Поэтому эти три числа называют также барицентрическими координатами (геометрической) точки Р.

Таким образом, выражение «барицентрическими координатами точки Р служат числа a, b, c» означает только то, что имеет место равенство

(A, a) + (B, b) + (C, c) = (P, p),

где

p = a + b + c.

Если массы трёх материальных точек увеличить (или уменьшить) в одно и то же число раз, то от этого положение их центра тяжести не изменится. Поэтому барицентрическими координатами геометрической точки Р будут также числа kЧa, kЧb, kЧc, где k — любое действительное число, не равное нулю.

Итак, геометрическая точка Р (в отличие от материальной точки Р) имеет бесконечно много троек барицентрических координат, причём каждая из этих троек может быть получена из какой-либо одной тройки (a, b, c) путём умножения на какую-либо константу k, отличную от нуля.

Если точка Р находится внутри координатного треугольника, то все три её барицентрические координаты одного знака (их можно считать положительными). Если точка Р — на какой-либо стороне координатного треугольника или на её продолжении, то хотя бы одна барицентрическая координата этой точки равна нулю. В остальных случаях две координаты точки Р — одного знака, а третья имеет противоположный знак.

Если точка Р расположена внутри базисного треугольника ABC, то в качестве её барицентрических координат можно принять площади треугольников BPC, CPA и APB.

Применение барицентрических координат позволяет внести одно существенное упрощение в рассуждения, связанное с рассмотрением материальных точек: рассмотрение любых произвольно расположенных материальных точек в любом числе сводится к рассмотрению только таких материальных точек, которые имеют носителями вершины базисного треугольника.