Магнитомягкие материалы. Ферриты

Электронная теория, возникшая в начале XX ст, была использована Н. Бором для построения модели атома. Вращающиеся электроны в модели атома 1912 г соединяют теорию молекулярных токов Ампера с электронной теорией. Различие между фактическим магнитным моментом магнитных атомов и магнитным моментом, который могли бы вызвать вращающиеся электроны, было объяснено введением спинового магнитного момента самого электрона. Предположение о внутриатомных обменных силах, введенное W. Heisenbеrg'ом, объясняет возникновение доменов. Только те атомы, которые, кроме известных гравитационных, магнитных и электрических сил, связаны этой предполагаемой силой, могут быть магнитными. Интересно, что эти обменные силы могут возникать и у сплавов из немагнитных элементов. Возвратимся опять к магнитному железняку. В то время, когда делались попытки найти хороший магнитный материал для сердечников цепей переменных токов, не были ясны представления о магнетизме элементов и сплавов, а тем более соединений каким является магнитный железняк. Магнетизм связывался с хорошей электропроводностью металлов. Кроме того, работа с металлическими элементами была более удобной. Магнитный железняк был забыт более чем на 20 лет. В то время изучалась атомная структура магнитных элементов и сплавов. При этих работах было объяснено влияние различных легирующих элементов и влияние загрязнений. Изучался магнетизм монокристаллов.

1. МАГНИТНЫЕ МАТЕРИАЛЫ

1.1. Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.

К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения А3В5, А2В6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая сильно зависит от напряженности магнитного поля и температуры.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т. п.

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.

Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом, — различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.

1.2. Классификация магнитных материалов

Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие.В отдельную группу выделяют материалы специального назначения.

К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.

К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п.

Условно магнитомягкими считают материалы, у которых Нс < 800 А/м, а магнитотвердыми — с Нс > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, а лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.

Рис. 2 Классификация магнитных материалов

Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.