Магнитомягкие материалы. Ферриты

КУРСОВАЯ РАБОТА

на тему:

«Магнитомягкие материалы. Ферриты»

СОДЕРЖАНИЕ

Введение…

1. Магнитные материалы…

1.1. Классификация веществ по магнитным свойствам…

1.2. Классификация магнитных материалов…

1.3. Особенности ферримагнетиков…

2. Магнитомягкие материалы…

2.1. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей…

2.2. Магнитомягкие высокочастотные материалы …

2.3. Ферриты…

2.4. Магнитные материалы специализированного назначения…

3. Область применения ферритов…

3.1. Ферритовые сердечники…

3.2. Запоминающие и переключающиеся цепи…

3.3. Принципы действия запоминающих и переключающихся цепей с сердечниками с ППГ…

3.4. Требования к сердечникам с ППГ. Критерии прямоугольности…

4. Получение ферритов…

4.1. Основные технологические схемы изготовления ферритов…

4.2. Исходное сырье и материалы, применяемые для изготовления ферритов…

5. Разновидности испытания над ферритами…

5.1. Механические испытания ферритов…

5.2. Способы измерения и контроля магнитных свойств ферритовых материалов и изделий из них…

5.2.1. Методы измерения статических свойств ферритовых изделий…

5.2.2. Способы автоматизации ферритовых изделий и методы измерения их импульсных свойств…

Выводы…

Содержание…

ВВЕДЕНИЕ

С изобретения телефона, а точнее с практического применения переменного электрического тока начинается история современных магнитомягких материалов. Изучались способы ограничения возрастающего затухания телефонных токов при увеличении дальности телефонной связи.

Использовать катушки с сердечниками из мелких стальных опилок и воска предложил Хевисайд в 1893 году. Они должны были ограничить возрастающее затухание на линии.

Основные требования к магнитомягким материалам для техники связи были определены в течение 1893−1900 гг. — малые потери, высокая магнитная проницаемость, малое искажение передаваемых токов и напряжений. Требования к магнитомягким материалам еще более возросли в связи с изобретением асинхронной машины и развитием однофазной и многофазной систем переменного тока. Требования стали заключаться в больших значениях индукции насыщения, малых потерях на гистерезис и вихревых токов, а также меньших старений, чем у использовавшейся в то время низкоуглеродистой стали.

Хорошее воздействие присадки кремния на магнитные свойства чистого железа было обнаружено в конце прошлого века. При этом примерно в 3 раза сократились удельные потери листовой стали. В следствие этого, низкоуглеродистая сталь в производстве магнитных материалов для электротехники стала заменяться на кремнистую.

Новым трамплином к поискам легирующих элементов, которые, наоборот, увеличивали бы индукцию насыщения послужило снижение индукции насыщения при введении кремния. В 1921 г Elmen, открыл и описал магнитные материалы, которые образуют большую группу пермаллойных сплавов на железо-никелевой основе. Ему хотелось обнаружить сплав с высокой магнитной индукцией, но обойдясь без дефицитного кобальта, влияние которого на увеличение индукции насыщения он сам же и открыл.

Первое применение пермаллоя в технике связи при конструировании телеграфного реле также относится к этому периоду. Следующий пермаллойный сплав — му-металл, был создан в 1927 г. в Германии. Он долго являлся материалом с самой большой проницаемостью. С этого периода начинается довольно успешная и интенсивная работа над повышением качества металлических магнитных материалов. Долгое время для высокочастотных цепей в сердечниках применялся феррокарт (сочетание из прессованных слоев бумаги и слоев мелкого железного порошка с лаком в качестве связки). Позднее был изготовлен железный порошок с величиной частиц от 1 до 10 мкм из пентакарбонила железа в 1928 г в Германии. Он применялся для изготовления карбонильных сердечников, часто применяемых в виде колец и стержней. В 1930 г, в Англии были изготовлены сердечники из порошка пермаллоя. По свойствам он превосходил карбонильные сердечники. Но из-за дефицитности сырья такие сердечники могла производить не каждая страна. Из-за этого в других странах усиленно разрабатывались из доступного сырья материалы для сердечников.

В Японии в 1935 году Х. Масумото нашел такой материал, который стал известен под названием альсифер. Это сплав на основе железа, легированный кремнием и алюминием. Чтобы выполнить новые высокие требования электротехники нужны новые виды магнитных материалов. Практически исчерпали свои возможности экспериментальные исследования металлических материалов, начатые 50−60 лет назад. Были использованы самые лучшие из простых, двойных и более сложных сплавов. В связи с развитием технологических процессов, вошли в применение плавка и обжиг. При термомагнитной обработке материалы получили новые свойства, действие которой известно со времени, когда отыскивали средства увеличения индукции насыщения кремнистой стали.

Большое внимание на данный момент уделяется ферритам. Лаборатория фирмы Philips в 1936 году начала научные исследования. Полученные в прошлые 70 лет практический опыт и теоретические знания в области ферромагнетизма, дали возможность вести работу по исследованию ферритов и технологии их производства совершенно по-другому.

Свое происхождение ферриты ведут от магнитного железняка — естественного постоянного магнита, который был известен на протяжении всей культурной истории человечества. Магнитный железняк благодаря своей малой электропроводности, а следовательно, малым потерям в переменных магнитных полях и казался пригодным для применения, несмотря на это, в начале развития техники связи отыскивали новые виды магнитных материалов искусственного состава. Однако совсем не пригодны для технического применения его магнитные свойства в природном виде.

Идея применения магнитного железняка была отодвинута почти на 30 лет, чтобы понять, почему это было сделано рассмотрим прежние взгляды и их использование при разработке новых видов магнитных материалов. Практически все природные явления, которые не могли объяснить в т. ч. и ферромагнетизм, объясняли раньше проявлением «флюидов». В начале XVII в. такое объяснение магнитных явлений давал В.Гильберт.

А.Ампер в 1822 г под влиянием открытия магнитного действия электрического тока, сделанного в 1820 г Эрстедом, для объяснения причины магнетизма предложил теорию молекулярных токов. Но он не мог объяснить, почему не происходит нагревания магнитного материала молекулярными токами и где возникает напряжение, вызывающее эти токи. В результате теория потеряла значение. Ewing подтверждает представления Вебера о молекулярных магнитах в конце XIX в., о том, что каждая отдельная молекула и каждый атом имеют собственные магнитные поля. Он построил модель из большого числа магнитных стрелок, размещенных в пространстве и легко вращающихся вокруг своей оси, на ней можно было снять данные кривой намагничивания. Это послужило подтверждением связи молекулярных магнитов с магнетизмом. Взаимное влияние магнитных стрелок наблюдалось при намагничивании модели. Также он высказывал возможность взаимодействия молекулярных магнитов.

Теорию Вебера продолжили развивать F. Bitter и P.Weiss. По их мнению группы большого числа атомов образуют домены (области), согласно ориентированным атомам, размером нескольких микронов. Это прямая аналогия магнитных стрелок Ewing’а. Домены полностью самопроизвольно намагничены до полного насыщения. Оно стационарно. Самопроизвольная намагниченность и напряженность магнитного поля для каждого вида магнитного материала разные. При такой намагниченности домены взаимодействуют между собой так, что изменяется направление вектора спонтанной намагниченности, т. е., чем больше спонтанная намагниченность, тем больше индукция насыщения материала. Для перевода векторов намагничивания доменов из хаотического неупорядоченного состояния в положение, когда они совпадают с направлением этого поля необходима тем меньшая напряженность поля, чем легче осуществляется действие внешнего поля на домены, в итоге, тем больше будет магнитная проницаемость материала, величина, служащая выражением пропорциональности между индукцией и напряженностью поля.

Основываясь на этом, можно хорошо понять современные взгляды на процесс намагничивания магнитных материалов, изображенный на рис. 1. Домены ориентированы полностью хаотически в ненамагниченном материале. Вне материала не ощущается магнитного эффекта, по причине того, что отдельные домены образуют друг с другом замкнутые магнитные цепи. За счет доменов с менее выгодной ориентацией, при воздействии небольшого внешнего поля, домены с более выгодной ориентацией относительно направления внешнего магнитного поля увеличивают свои размеры. Направление, при котором ориентированные домены имеют минимальную энергию называется выгодным, легким направлением намагничивания. Т. е., это направление, при котором домены под влиянием внутреннего размещения атомов в кристаллах, внешних и внутренних механических сил и направляющего действия внешнего магнитного поля имеют минимальное взаимодействие. На этой стадии намагничивания домены меняют свои размеры, это происходит смещением их взаимных границ. Название граничной зоны — стенка Блоха, по имени открывшего это явление F.Bloch. При исчезновении внешнего магнитного поля наступает обратное распадение доменов, т. е. эти изменения обратимы.

Рост доменов путем смещения стенок при дальнейшем увеличении внешнего магнитного поля до определенного значения происходит скачком. У поликристаллических материалов в этой фазе при изменении магнитного поля