Лекции по физике за 3 семестр

Элементы квантовой механики

1. Волновая функция

Я уже упоминал, что строение вещества, поведение систем на атомарном уровне классическая механика оказалась бессильной описать, то есть свойства систем атомарных масштабов не вписываются в правила игры классической механики и классической физики. Оказалось, что всё потому, просто, что исходные представления классической механики оказываются неприменимы в этом случае. И самое главное, что вообще исходное базовое понятие классической механики УчастицаФ, локализованный в пространстве объект, движущийся по определённой траектории с определённой скоростью, это исходное представление оказалось неприменимо. Хотя, употребляются слова Участица электрон летитФ, но картину электрон, который летит по определённой траектории, в каждой точке с определённой скоростью, выкиньте из головы, весь этот образ совершенно не работает, и мыв увидим, почему. 1) Классическая механика неприменима в этой области.

§ 4. Волновые свойства частиц

Проведём мысленный эксперимент. Пусть у нас имеется экран, в экране щель, на эту щель падает поток частиц (для определённости электронов), 2) на пути этого пучка ставим непрозрачный экран со щелью, а за ним ставим другой экран, на котором регистрируются попадания электронов. 3) Если пучок достаточной интенсивности, то мы будем наблюдать вот такое распределение интенсивности свечения (рис. 1. а). Если электроны пускать поштучно, наберём статистику, получим вот такое распределение, пока всё нормально.

А дальше мы делаем вот что: ставим две щели, что надо ожидать? От одной щели получаем такое распределение, от другой тоже, они накладываются, и ожидаемая картина такая (рис. 1. b).

На самом деле, ничего подобного. Если мы поставим две щели, ожидаемая картина рис. 1. b, а на самом деле мы получим вот такую картину распределения от двух щелей (рис. 1. с).

Что тут удивительного? А удивительно вот что: в эту точку 1) от одной открытой щели они попадают, если её закрыть, другую оставить, от другой они сюда тоже попадают, открываем две щели — не попадают. От каждой попадают, от двух щелей не попадают, это, конечно, уже удивительное обстоятельство. Можно подумать, что эти пучки электронов от двух щелей как-то хитро взаимодействуют друг с другом и дают такое диковатое распределение. Можно проверить взаимодействуют или нет: пучок электронов можно сделать очень слабым, ну, поштучно пропускать (один пустили и ждём, другой пустили и ждёмЕ), тогда мы будем регистрировать на экране одиночные акты попадания (тут выпала точка, тут выпала точкаЕ). Будет следующее: если они летят поштучно при открытой верхней щели, а нижней закрытой, мы получим, наберя статистику, вот такое распределение (рис. 1. a), закроем верхнюю щель, откроем нижнюю, получим такое же распределение, откроем обе щели — опять такое (рис. 1. с).

Он летит один, — если открыты две щели, он сюда (см. примечание 1) никогда не попадёт, открыта одна щель, он сюда попадёт. Тогда спрашивается, откуда он, подлец, знает, что делается со второй щелью, открыта она или закрыта она, или он проходит одновременно через две щели, раздваивается? Тоже можно проверить, как проверить? В принципе, можно наблюдать прохождение частицы через щель (грубо говоря, в микроскоп). Посадим двух наблюдателей, начнём поштучно пропускать электроны, тогда, если один наблюдатель кричит УестьФ, то другой молчит, у него нет, — электрон не раздваивается. Опять встаёт тот же вопрос, откуда он знает о второй щели? И ответ такой: вопрос снимается сам собой! Если мы здесь поставим этих соглядатаев, которые фиксируют прохождение электронов либо здесь, либо здесь, вот эта вся картина (рис. 1. c) разрушается, получается вот такая (рис. 1. b). Вот таково поведение частиц, и именно вот это поведение выражается словами частицы обладают волновыми свойствами. Почему волновыми? Да, потому что это типичная картина интерференции от двух щелей.

Если мы имеем две щели, то мы должны считать, что на эти щели падает волна, получается вот такая интерференционная картина (это только, если мы имеем две щели и никаких микроскопов, никаких соглядатаев, которые ловят эту частицу на месте преступления). Если мы имеем две щели с микроскопами, частица ведёт себя как частица и никакой интерференции не происходит. Это резюмируем так, что в определённых ситуациях частицы проявляют волновые свойства, то есть демонстрируют вот такую интерференционную картину, в других определённых ситуациях они ведут себя как нормальные частицы.

Ну и тогда понятно, куда же тут соваться нам с классической механикой? Никакой интерференции, конечно, классическая механика не предусматривает. Тот факт, что открыты две щели или открыта одна щель влияет на распределение частиц на экране, говорит о том, что понятие траектории неприменимо, потому что, когда идёт такое распределение, нельзя приписать электрону определённую траекторию. Потому что траектория должна была бы проходить либо здесь, либо здесь, она не может пройти одновременно через две щели, а он ведёт себя так, как будто он знает про вторую щель. Значит, понятие траектории не применимо, ну и соответственно рушится тогда вообще вся схема, которую мы изучали (классическая механика).

Для описания поведения частицы в атомарных масштабах пришлось создать совершенно другую науку. В начале девятисотых годов начало появляться такое неуютное ощущение, что с физикой что-то не в порядке, она не справляется с проблемами, и вот за четверть века всё это было решено.

1. Волновая функция

Вот теперь мы начнём рассматривать, как были решены эти проблемы. Теперь вы можете забыть всю классическую механику. Многим из вас, даже очень многим из вас, это будет не легко, помню, как многие из вас на зачёте по механике мучились. Выкиньте всё это из головы и забудьте как страшный сон, у вас впереди новое, похуже классической механики. Опять вы будете мучиться, но то вы можете забыть.

Состояние частицы в классической механике задаётся радиус-вектором и импульсом. Что означает задать состояние? Это означает на столько охарактеризовать объект, чтобы дальше соответствующий раздел науки мог предсказать, как этот объект будет развиваться. Понятно, что смысл этих слов в различных разделах физики различен. Вот, мы недавно электричество рассматривали, что значит дать исчерпывающее описание объекта с точки зрения электричества? Надо дать распределение плотности заряда и плотности тока. Что значит задать состояние объекта с точки зрения теоретической механики? Это значит задать распределение масс, то есть плотность обычную, и напряжения. В квантовой механике мы не можем задать вот эти переменные.

Состояние частицы в квантовой механике задаётся волновой функцией , то есть функцией координат и времени, заданной в каждой точке пространства, это комплексная функция. Значит, что вы должны уловить: в классической механике мы задаём координаты и импульс частицы, в квантовой механике этого сделать нельзя, а вот когда мы хотим охарактеризовать состояние частицы, мы должны задать вот такую функцию.

Волновая функция содержит исчерпывающую информацию о состоянии частицы, то есть она позволяет дать ответы на все разумные вопросы относительно характеристик частицы. Слово УразумныеФ я употребил тут не ради красного словца, а со смыслом. Дело в том, что те вопросы, которые в рамках классической механике выглядят и являются разумными, не являются разумными в квантовой механике. Ну, сейчас проиллюстрируем это дело. Волновая функция имеет такой смысл: это прежде всего комплексная функция, и — это есть вероятность того, что частица будет обнаружена в окрестности точки, в элементе объёма. Первое важное обстоятельство: предсказания в квантовой механике носят принципиально вероятностный характер, это означает, что законы природы на фундаментальном уровне носят вероятностный характер.

Это надо прокомментировать. Скажем, вопрос, где находится частица, является неразумным, на него не может быть дан ответ, потому что само понятие частица находится в какой-то точке оказывается лишённым смысла. Вот, молекулы воздуха тут летают, тоже вводится вероятностное описание (просто мы не можем уследить за каждой из этих молекул), мы знаем, что она где-то есть, но мы не знаем где она. Поставим ящик, мы можем рассчитать вероятность того, что она находится в ящике. Там вероятность это мера нашего незнания, в квантовой механике эта вероятность чисто реальная: пока мы частицу не обнаружили, она потенциально находится всюду, не то, что она где-то есть, а мы не знаем где, само представление, что она где-то есть, лишено смысла. Она потенциально находится всюду, где волновая функция отлична от нуля. А когда мы локализуем это (экран поставили, там электроны обнаруживаются), вот только в этом акте измерения это потенциальное нахождение всюду оно актуализируется. Есть разница в представлениях, что она где-то есть и мы не знаем где, и тем, что она потенциально всюду, пока мы её не поймали в этой точке. Ещё раз повторю, все фундаментальные законы носят вероятностный характер.

5 В прошлый раз мы остановились на обсуждении волновой функции и на такой формуле: . Ещё раз повторю, что вот эта вещь (короче можно записать в таком виде ) это вероятность того, что частица будет обнаружена в элементе объёма в окрестности точки . Волновая функция задана на всём пространстве, и вероятность обнаружения частицы в разных точках различна. Я уже говорил, ещё раз повторю, что в квантовой теории предсказания носят принципиально вероятностный характер, это связано не с тем, что частица по теории вероятности обнаружится, а с тем, что частица где-то есть, а мы не знаем где. Ситуация более драматичная: частица потенциально есть всюду, где , и потом где-то она обнаруживается (что-то такое происходит, где-то там частица провзаимодействовала с чем-то). 1) Если волновая функция частицы известна, то, очевидно, известно всё, что можно знать. Волновая функция исчерпывающе описывает состояние частицы, то есть может дать ответы на все разумные вопросы. Нюанс только в том, что вопросы, которые в рамках классической физики разумны, например, вопрос, где находится частица, разумный, он здесь оказывается неразумным, и ответ на него дать нельзя. Какие вопросы разумны, какие нет, мы дальше увидим по ходу дела, но в квантовой механике обнаружилось, что не на всякий вопрос, сформулированный на обыденном языке, может быть дан ответ. 2) Нашей задачей будет научиться давать ответы на разумные вопросы. А пока двигаемся дальше.

§ 5. Уравнение Шрёдингера

1. Решение уравнения Шрёдингера для свободной частицы 2. Длина волны Дебройля (де Бройля) 3. Волновые пакеты. Соотношения неопределённостей 4. Расплывание волновых пакетов 5. Стационарные состояния 6. Прохождение частицы через потенциальный барьер. Туннельный эффект 7. Связанные состояния. Частица в ящике

Волновая функция описывает состояние, состояние любого физического объекта как-то эволюционирует во времени, и должно быть уравнение, которое будет описывать изменение со временем волновой функции, а ещё состояние объекта изменяется в зависимости от окружающей среды, значит, должно быть уравнение, описывающее изменение состояния в заданной обстановке. Кстати, в классической механике это что за уравнение? Второй закон Ньютона. Уравнение Шрёдингера должно играть здесь ту роль, которую закон Ньютона в классической механике. Понятно, что, если состояние задаётся такой функцией, прилепить сюда Второй закон Ньютона невозможно — он оперирует координатами, ускорениями, а у нас ничего такого нет. Вот уравнение Шрёдингера (нерелятивистское) играет роль Второго закона Ньютона и выглядит так: (1) Функция — потенциальная энергия частицы в заданном поле сил. Вот, во Втором законе Ньютона окружающая обстановка вводится в уравнение посредством сил, а здесь потенциальная энергия. Могут быть силы и не потенциальные, и тогда это уравнение будет писаться иначе, но мы к этому позднее ещё вернёмся.

Откуда оно взялось? Ну, это интересный вопрос, как Шрёдингер додумался до этого уравнения, но он не имеет отношения к делу. В теории исходные уравнения постулируются, нет никаких классических способов доказать справедливость уравнений, справедливость или несправедливость определяется тем, работает ли математическая теория, построенная на базе этих уравнений. 1) Это уравнение подтверждается тем, что теория, построенная на базе этого уравнения работает и даёт правильные предсказания для всех ситуаций, где она применима.

1. Решение уравнения Шрёдингера для свободной частицы

Смысл этого уравнения, как и уравнений Максвелла, мы будем усматривать из некоторых конкретных ситуаций. Когда мы переберём все возможные ситуации, тогда мы и осознаем смысл уравнения, другого понятия смысла и быть не может.

Свободная частица — это простейший объект в классической механике и, соответственно, простейший объект в квантовой механике. Что такое свободная частица? Это частица, на которую не действуют никакие силы. Как узнать, действуют или не действуют? Возникает наглядное представление о свободной частице: на всём белом свете есть одна частица и всё, удалили всю вселенную, тут заведомо на неё никто не действует, потому что, просто, больше никого нет. Если свободная частица подчиняется законам классической механики, то в любой инерциальной системе она либо неподвижна, либо движется с постоянной скоростью. Теперь этот объект мы будем рассматривать в рамках этого уравнения. Слова Усвободная частицаФ означают, что . 1) Можно положить константу равной нулю, не теряя общности, потому что потенциальная энергия определена с точностью до константы, поэтому мы положим , и уравнение будет иметь вид: (2) Это уравнение в частных производных, я его не буду решать, я просто предъявлю решение, и мы убедимся, что это действительно решение. В качестве кандидата на решение выдвигаем вот такую функцию: , это уравнение плоской волны (поскольку там волновые свойства наблюдаются, испытаем в качестве решения плоскую волну). Будем испытывать: фазу обозначим буквой u, , 2) , а , таким образом, , теперь . 3) Подставляем то, что мы добыли, в уравнение (мы хотим убедиться, будет ли эта функция решением уравнения (2)): . И мы видим, что, если , то предъявленная функция будет решением.

Значит, функция (3) удовлетворяет уравнению Шредингера для свободной частицы, если константы k, ω не любые, взятые с потолка, а связаны таким образом: . (4) Забегая вперёд, дальше будет ясно почему так, а сейчас это будет голословное утверждение: Волновая функция (3) описывает частицу с энергией и с импульсом . Откуда берётся такая интерпретация пока аргументировать не можем, а пока это условие (4) означает, что ! Это, конечно, симпатичный результат, потому что действительно, так как уравнение (1) не релятивистское, .

Теперь, конечно, хочется взглянуть на волновую функцию на базе тех наших смутных знаний о ней. Мы знаем, что есть вероятность обнаружить частицу, смотрим, оказывается . Вероятность обнаружить частицу в этом состоянии (с определённой энергией и с определённым импульсом) всюду одинакова. Волновая функция (3) осциллирует, это бегущая волна, вроде есть движение, но функция Ψ не наблюдаема, это математическая функция, за функцией Ψ не стоит никаких наблюдаемых величин, а наблюдаема , вероятность, вероятность можно измерять: один раз поймали частицу в этом состоянии, другой раз ловим и набираем статистику, оказывается, что мы будем её ловить с одинаковой вероятностью где угодно. Распределение вероятности застывшая картина ( не зависит от t), то есть всё наблюдаемое распределение застывшее. Конечно, одинаковая вероятность найти частицу здесь или в другом угле вселенной неприятна, уж слишком далеко это представление, но надо иметь в виду, что само решение физически не реализуемо: в электродинамике плоская волна обладала бы бесконечной энергией, но решение на самом деле очень полезно.

Математический факт такой, что беря суперпозицию этих функций со всевозможными частотами и волновыми векторами, мы можем получить все решения уравнения Шрёдингера для свободной частицы. Общее решение уравнения Шрёдингера для свободной частицы представляется в виде суперпозиции функций вида (3): То есть задайте любой вектор , задайте любую константу , запишите функцию (3), ω χεπез вектор выражается, получится частное решение. Суммируя по всевозможным векторам , и подбирая различные константы , вы можете изобразить любое решение этого уравнения.

Мы написали общее решение уравнения. Вы, конечно, должны были удивиться: функция (3) есть решение волнового уравнения, которое выглядит так: (5) В (2) тоже, но первая производная! Это замечательное обстоятельство — поиск комплексного решения математически приводит к тому, что уравнение (2) удовлетворяется уравнением волны, хотя, его штатная роль — быть решением уравнения (5).

2. Длина волны Дебройля (де Бройля) 1)

Мы сейчас можем понять тот эксперимент с частицами, который наблюдали в прошлый раз. Пусть у нас имеется пучок частиц с определённым импульсом, такой пучок частиц описывается функцией (3) это плоская волна, значит, мы устроим пучок частиц с определённым импульсом, частица с определённым импульсом описывается волновой функцией. Эта волна падает на экран со щелями, дальше из этих щелей выходит сферическая волна, и на экране эти волны интерферируют. Если из верхней щели идёт волна , а из нижней , то в точке A мы будем иметь: .

Что такое ? Это вероятность обнаружить частицу в точке A, если бы не было второй щели. Мы видели, что ожидаемый результат от наложения этих интенсивностей , а эти два слагаемых и дают интерференцию.

Какой длиной волны характеризуются эти функции? Число у нас связано с импульсом частицы: , . Длина волны (6) называется длиной волны Дебройля.

Дебройль ещё до всей этой науки выдвинул гипотезу о том, что частице надо приписывать волновые свойства, которые характеризуются вот такой длиной волны. Наводящие соображения — это поведение фотонов (фотоны к тому времени были известны): импульс фотона равняется , и , то есть для фотонов это само собой справедливо. При прохождении частиц через отверстия наблюдается интерференция, длина волны, которая характеризует такую интерференцию, определяется по расстояниям между максимумами и минимумами, и эта длина волны действительно связана с импульсом частиц.

определяет вероятность обнаружить частицу, а сама функция тогда называется амплитудой вероятности. Если частице приписываются волновые свойства с длиной волны , то спрашивается, это волна чего? Волна просто так не бывает: звуковая волна — это идёт волна давления, электромагнитная волна — это волна возмущения электромагнитного поля, волна, приписываемая частице, это волна амплитуды вероятности. Функция Ψ имеет волновой вид, и надо помнить, что сама по себе амплитуда вероятности не наблюдается, то есть нет способа измерить саму функцию Ψ, наблюдаемой величиной является именно вероятность.

Амплитуда не наблюдаема, фаза наблюдаема, и именно фаза определяет интерференционнный результат. Если частицы проходят через две щели и мы не можем сказать, через какую щель проходят частицы, то в точке A складываются амплитуды, если мы здесь поставим микроскопы, то в точке A складываются вероятности. Это правило вводит в рамки теории тот удивительный факт, что, когда мы ставим микроскопы, то нарушается интерференционная картина. Даже можно понять, почему нарушается. Когда мы пытаемся пронаблюдать частицу в щели, а наблюдение это всегда проявляется во взаимодействии, 1) надо по крайней мере идти с фонарём, чтобы её осветить, при чём осветить светом с достаточно малой длиной волны. 2) Если мы хотим её фиксировать в пределах щели, то длина волны должна быть не больше, чем ширина щели. Это означает, что частота должна быть достаточно велика, а это означает, что импульс фотона достаточно большой (по крайней мере, один фотон должен рассеяться на частице и попасть нам в глаз через микроскоп), и когда этот фотон взаимодействует с частицей, то он, конечно, меняет её состояние. А к чему это приводит с точки зрения волновой картины? Когда мы электрон наблюдаем, то взаимодействие приводит к тому, что фаза волны в этой точке хаотически меняется и волны, идущие от этих щелей, перестают быть когерентными, а когда они перестают быть когерентными, то интерференционные члены дают в среднем ноль. Вот как решается эта задача со щелями.

Ну, и, наконец, последний вопрос — являются ли волновые свойства свойствами какого-то специального сорта частиц (электронов или частиц атомных масштабов)? Ответ — нет, волновые свойства присущи всем частицам. Почему же тогда классическая механика существует и мы никогда не наблюдали интерференционные явления, связанные с пулями или падающими камнями? Ответ — длина волны очень мала: , импульс макроскопических объектов — величина порядка единицы, значит, длина волны для классических объектов — величина порядка 10-34м: . Наблюдать интерференционные явления с такой длиной волны невозможно (размер атома водорода 10-10) ! Значит, волновые свойства присущи всем частицам, просто для макроскопических частиц они не наблюдаемы (по той же причине, по какой волновые свойства света не очень наблюдаемы на бытовом уровне).

3. Волновые пакеты. Соотношения неопределённостей

Монохроматическая волна — такая синусоида бесконечной длины — это, конечно, чистая абстракция. Нигде никогда таких волн не бывает. Реальная волна это такая вещь: 1) Беря суперпозицию синусоидальных волн, мало отличающихся друг от друга по частотам , можно построить, так называемый, волновой пакет, то есть пакет с определённой длиной волны Δx и определённой длительностью Δt. 2) Значит, можно получить такое решение [уравнения Шрёдингера], которое называется волновым пакетом. Он ограничен в пространстве и во времени.

Синусоидальная волна имеет скорость, называемую фазовой, . Волновой пакет строится из набора волн с частотами в интервале и волновыми числами . Скорость электромагнитной волны в вакууме не зависит от частоты, но, если есть дисперсия, скорость зависит от частоты. В диспергирующей среде волновой пакет расплывается, поскольку скорости его монохроматических составляющих отличаются друг от друга, весь пакет идёт с групповой скоростью в окрестности центрального волнового числа k0. 1) У нас для волн, представляющих амплитуды вероятностей есть дисперсия.

И здесь мы снова подбираемся к представлению, почему возможна классическая механика. Если мы имеем решение в виде волнового пакета, это означает, что частица находится где-то в пределах волнового пакета, снаружи вероятность равна нулю, и этот волновой пакет движется с групповой скоростью . Но это и есть классическая скорость частицы! Значит, пуля, обычная пуля, она просто характеризуется очень узким компактным волновым пакетом. В его пределах сидит центр масс пули, и этот пакет много меньше фактических размеров пули, и поэтому она и выглядит как локализованный объект. Но для электрона этот волновой пакет уже даёт большую неопределённость.

6 Мы видели, что решением уравнения Шрёдингера для свободной частицы является функция , она описывает состояние частицы с импульсом и энергией , при этом , это означает, что вероятность обнаружить частицу в любой точке пространства одинакова.

Строго монохроматическая волна — это состояние экзотическое. Таких волн в природе нет. Дальше математический факт: общее решение уравнения Шрёдингера для свободной частицы может быть получено суперпозицией таких решений. Из теории рядов Фурье известно, что, беря суперпозицию таких синусоидальных функций, можно построить функцию отличную от нуля лишь в ограниченной области пространства и равную нулю во всём остальном пространстве, так называемый волновой пакет.