Вступительные вопросы по физике для заочников

Закон Кулона. Опыты Кулона привели к установлению закона поразительно напоминающего закон всемирного тяготения.Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояние между ними. Эту силу называют кулоновской.

Если обозначить модули зарядов через |q1| и |q2|, а расстояние между ними

через r, то закон Кулона можно записать в следующей форме:

где k — коэффициент пропорциональности, численно равный силе взаимодействия единичных зарядов на расстоянии, равном единице длины. Его значение зависит от выбора системы единиц.

23. Напряженность электрического поля. Поле точечного заряда. Принцип суперпозиций электрических полей.

Основные свойства электрического поля.Главное свойство электрического поля — действие его на электрические заряды с некоторой силой.

Электрическое поле неподвижных зарядов называют электростатическим. Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами.

Напряженность электрического поля. Электрическое поле обнаруживается по силам, действующим на заряд.

Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональная этому заряду. Действительно, пусть поле создается точечным зарядом q1. Согласно закону Кулона на заряд q2 действует сила, пропорциональная заряду q2. Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называют напряженностью электрического поля. Подобно силе, напряженность поля—векторная величина; ее обозначают буквой Е. Если помещенный в поле заряд обозначить через q

вместо q2 то напряженность будет равна:

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.

Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Напряженность поля в единицах СИ можно выразить, в ньютонах на кулон (Н/Кл).

Принцип суперпозиции полей.

Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.

В этом состоит принцип суперпозиции полей который формулируется так: если в данной точке пространства различные заряженные частицы создают

электрические поля, напряженности которых

и т. д., то результирующая напряженность поля в этой точке равна:

24. Проводники и диэлектрики в электрическом поле.

Проводники — тела, в которых существуют свободные заряды, не связанные с атомами. Под воздействием эл. поля заряды могут двигаться, порождая электроток. Если проводник внести в электрическое поле, то положительно заряды движутся по направлению вектора напряженности, а отрицательно заряженные в противоположном направлении. В результате на поверхности тела появляются индуктивные заряды:

Напряженность поля внутри проводника = 0. Проводник как бы разрывает силовые линии напряженности электрического поля.

Диэлектрики— вещества, в которых положительные и отрицательные заряды связаны между собой и нет свободных зарядов. В электрическом поле диэлектрик поляризуется.

Внутри диэлектрика существует электрическое поле, но оно меньше электрического поля вакуума E в ε раз. Диэлектрическая проницаемость среды ε равна отношению напряженности электрического поля в вакууме к направлению электрического поля в диэлектрике ε=E0/E

25. Потенциал. Потенциал поля точечного заряда.

Работа при перемещении заряда в однородном электростатическом поле. Однородное поле создают, например, большие металлические пластины, имеющие заряды противоположного знака. Это поле действует на заряд с постоянной силой F=qE.

Пусть пластины расположены вертикально левая пластина В заряжена отрицательно, а правая D — положительно. Вычислим работу, совершаемую полем при перемещении положительного заряда q из точки 1, находящейся на расстоянии d1 от пластины В, в точку 2, расположенную на расстоянии d2<d1 от той же пластины.

Точки 1 и 2 лежат на одной силовой линии. На участке пути ∆d=d1—d2электрическое поле совершит положительную работу: A=qE (d1—d2). Эта работа не зависит от формы траектории.

Потенциалом электростатического поля называют отношение

потенциальной энергии заряда в поле к этому заряду.

Согласно данному определению потенциал равен:

(Разность потенциалов. Подобно потенциальной энергии, значение потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение

имеет не сам потенциал в точке, а изменение потенциала, которое не зависит от выбора нулевого уровня отсчета потенциала.Так как потенциальная энергия

Wp=qφ то работа равна:

Разность потенциалов равен:

Разность потенциалов (напряжение) между двумя точками равна отношению работы поля при перемещении заряда из начальной точки в конечную к этому заряду. Pазность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом (В).

26. Электроемкость. Конденсаторы. Емкость плоского конденсатора.

Напряжение между двумя проводниками пропорционально электрическим зарядам, которые находятся на проводниках. Если заряды удвоить, то напряженность электрического поля станет в 2 раза больше, следовательно, в 2 раза увеличится и работа, совершаемая полем при перемещении заряда, т. е. в 2 раза увеличится напряжение. Поэтому отношение заряда одного из проводниковк разности потенциалов между этим проводником и соседним не зависит от заряда. Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды (диэлектрической проницаемостью ε). Это позволяет ввести понятие электроемкости двух проводников.

Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним:

Иногда говорят об электроемкости одного проводника. Это имеет смысл, если проводник является уединенным, т. е. расположен на большом по сравнению с его размерами расстоянии от других проводников. Так говорят, например, о емкости проводящего шара. При этом подразумевается, что роль другого проводника играют удаленные предметы, расположенные вокруг шара.

Электроемкость двух проводников равна единице, если при сообщении им зарядов ± 1 Кл между ними возникает разность потенциалов 1 В. Эту единицу называют фарад (Ф);

1 Ф=1 Кл/В.

Конденсатор. Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.

2.Емкость плоского конденсатора. Рассмотрим плоский конденсатор, заполненный однородным изотропным диэлектриком с диэлектрической проницаемостью e, у которого площадь каждой обкладки S и расстояние между ними d. Емкость такого конденсатора находится по формуле:

где ε -диэлектрическая проницаемость среды, S — площадь обкладок, d — расстояние между обкладками.

Из этого следует, что для изготовления конденсаторов большой ёмкости надо увеличить площадь обкладок и уменьшать расстояние между ними.

Энергия W заряженного конденсатор: или

Конденсаторы применяются для накопления электроэнергии и использования её при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного токов, в выпрямителях, колебательных контурах и других радио-электронных устройствах. В зависимости от типа диэлектрика конденсаторы бывают воздушные, бумажные, слюдяные.

Применение конденсаторов. Энергия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.

Они имеют одно и свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при pазрядке через цепь малого coпpoтивления они отдают энергию почти мгновенно. Именно это свойство используются широко на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатор.