Введение в физику черных дыр

Универсальность гравитационного взаимодействия. Гравитационное взаимодействие обладает еще одним, крайне важным, отличительным свойством — оно универсально. Для каждого из остальных, перечисленных выше взаимодействий существуют нейтральные частицы, тогда как все объекты, существующие в природе (включая и поля), порождают гравитационное поле. В роли гравитационного заряда выступает полная масса т системы, которая, как учит специальная теория

относительности, связана с полной энергией системы Е соотношением т=Е/с2. Именно поэтому все объекты природы, обладая энергией, непременно участвуют в гравитационном взаимодействии. «Весит», в частности, и само гравитационное поле, что приводит к существенной нелинейности уравнений Эйнштейна, описывающих тяготение.

ЧТО ТАКОЕ ЧЕРНАЯ ДЫРА?

Вывод Лапласа. Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не вы пускает наружу лучей света. На языке космонавтики 9то означает, что вторая космическая скорость была бы больше скорости света с. Вывод Лапласа основывался на следующем рассуждении. Для того чтобы преодолеть гравитационное притяжение, создаваемое телом с массой М, и улететь на бесконечность, пробное тело на поверхности этого тела радиуса R должно обладать скоростью v, такой, что v2/2>=GM/R. Считая, что это соотношение применимо для света, мы вместе с Лапласом приходим к заключению, что если масса объекта сосредоточена в области с радиусом, меньшим так называемого гравитационного радиуса тела? Rg :Rg= =2GМ/с2≅~1,5−10-28М (масса М измеряется в граммах, Rg — в сантиметрах), то даже свет не выйдет за пределы этой области. Для Солнца гравитационный радиус — около 3 км, для Земли — порядка 1 см.

Теория Эйнштейна — ключ к проблеме черных дыр. Вывод Лапласа, строго говоря, является ошибочным, поскольку он основан на классической механике и 'теории тяготения Ньютона. В действительности, однако, нельзя пользоваться ни той, ни другой: распространение света подчиняется законам релятивистской механики, а сильное поле тяготения, т. е. поле, гравитационный потенциал которого phi = GM/R в единицах с2 порядка единицы: phi/с2~1, описывается общей теорией относительности. Тем не менее, как это иногда случается в истории

науки, обе «ошибки» Лапласа точно скомпенсировали друг друга и вывод о невозможности выхода световых сигналов из-под гравитационного радиуса оказался совершенно правильным. Более того, связанный со специальной теорией относительности и справедливый в общей теории относительности запрет на существование в природе сигналов, переносящих информацию со скоростью, большей скорости света, придал утверждению о невозможности получения какой-либо информации о событиях, происходящих под гравитационным радиусом, еще более категорический смысл.

.Подобное тело, сжатое до размера своего гравитационного радиуса, получило название черной дыры, а границу черной дыры, т. е. поверхность, ограничивающую область, откуда невозможен выход сигналов, стали называть горизонтом событий. Хотя вывод Лапласа о возможности существования черных дыр сохраняется и в общей теории относительности Эйнштейна, само описание этого объекта имеет существенные отличия. Прежде чем перейти к точному определению черных дыр и к рассказу об их удивительных свойствах, необходимо хотя бы несколько слов сказать об эйнштейновской теории гравитации.

КРАТКИЕ СВЕДЕНИЯ ОБ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА

Принцип эквивалентности. Общая теория относительности, в окончательной форме сформулированная Эйнштейном в 1915 г., возникла в результате попытки построения релятивистского обобщения теории тяготения Ньютона, т. е. приведения теории Ньютона в соответствие с принципом конечности скорости распространения взаимодействия и с законами специальной теории относительности. Исходным пунктом для построения общей теории относительности явился принцип эквивалентности инертной и гравитационной масс. Согласно этому принципу отношение гравитационной массы mгр, определяющей силу F, действующую на тело в гравитационном поле напряженности T: F = mгрГ, к инертной массе тин, связывающей силу F и величину вызываемого ею ускорения a:F = mинa, не зависит от свойств и состава тела. Поэтому ускорение пробного тела в трави-

рационном поле определяется только напряжённостью поля в точке, где тело находится. Иными словами; «в гравитационном поле зависимость от времени положения пробного точечного тела, его мировая линия, однозначно определяется начальным положением тела и его скоростью. Тем самым задача изучения движения частиц в гравитационном поле сводится к изучению геометрии мировых линий. В отсутствие поле тяготения мировые линии движения свободных частиц являются прямыми, т. е. кратчайшими, линиями между произвольной парой точек, лежащих на них. Оказывается, что при наличии гравитационного поля мировые линии пробных тел тоже можно считать „кратчайшими“, если только отказаться от предположения о том, что простр? а нет вовремя — плоское, и подобрать его геометрию соответствующим образом.

Гравитация как геометрия. Геометрия искривленного пространства определяется заданием расстояния между произвольной парой близких точек этого пространства. Тем самым определяется понятие длины любой кривой в таком пространстве. „Кратчайшие“ кривые Лосят название геодезических. В заданных координатах квадрат расстояния ds2 между парой близких точек 'с координатами хмю и х'+dxмю в точке х определяется следующим образом: ds2 = gмюню(х)dхмюню,. Набор функций gмюню, задающий в каждой координатной системе pdc-стояние между близкими точками, называется метрикой. В плоском пространстве-времени координаты можно выбрать так, что функции gмюню постоянны во всем пространстве-времени и метрика имеет вид: ds2 = этамюню dxмюdx' -= (тождественно=) —C2dt2 + dx2 + dy2 + dz2. В общем случае это невозможно. Самое большее, чего удается достичь за счет выбора координат, это добиться совпадения метрики gмюню (х) В Окрестности ПРОИЗВОЛЬНОЙ ТОЧКИ x0 С этамюню с точностью до величин второго порядка малости.

Предположим теперь, что в гравитационном поле свободно движется невращающееся пробное тело. Свяжем с ним систему отсчета и, воспользовавшись принципом эквивалентности, постараемся описать в этой системе явления, происходящие в окрестности тела. Прежде всего заметим, что если мы ограничимся областью пространства-времени, размеры которой I много меньше характерной длины L, на которой гравитационное ноле

заметно изменяется, то ускорения всех тел в такой окрестности практически совпадают и относительно выбранной нами системы отсчета такие тела будут двигаться равномерно и прямолинейно. Иными словами, переходом к свободно падающей системе отсчета можно локально исключить гравитационное поле. В такой системе отсчета движение тел подчиняется законам, специальной теории относительности, а отклонение от этих законов тем меньше, чем меньше величина отношения HL,

Строго говоря, сделанный вывод о возможности, две-дения путем перехода к падающей системе отсчета задачи о движении в гравитационном поле к задаче о движении в инерциальной системе отсчета вне поля тяготения, т. е. к задаче специальной теории относительности, непосредственно касается только механических явлений. Заметим, однако, что осуществленная с крайне высокой степенью точности экспериментальная проверка равенства инертной и гравитационной массы { Вариация отношения mгр/mин при выборе различных веществ не превышает величины 10-12. Этот лучший в настоящее время результат был получен в 1971 г. в МГУ в группе В. Б. Брагинского.} позволяет распространить этот вывод на широкий класс немеханических явлений и сделать далеко идущие выводы о характере взаимодействия вещества и физических полей с гравитацией.

Дело в том, что свой вклад в полную энергию системы, а следовательно, и в ее инертную массу, вносят не только механические массы покоя частиц, входящих в состав системы, но и кинетическая энергия, связанная с их движением, а также и потенциальная энергия электромагнитного, сильного, слабого и самого гравитационного взаимодействий частиц друг с другом. Тот факт, что гравитационный заряд, равный гравитационной массе системы, совпадает с ее полной инертной массой, означает, что каждое из взаимодействий дает свой вклад в вес тела.

Объяснить эти экспериментальные результаты можно, лишь предположив, что принцип эквивалентности справедлив не только для механических движений, т. е. что выполняется более общий, так называемый принцип эквивалентности Эйнштейна, гласящий, что результат любого (не обязательно механического) локального эксперимента, выполненного в свободно падающей системе отсчета, не зависит от того, где и когда во Вселенной этот эксперимент был выполнен, и от того, с какой скоростью двигалась система отсчета. Согласно этому принципу для описания взаимодействия любой системы с гравитационным полем достаточно знать закон, управляющий поведением системы в инерциальной системе отсчета. Поведение системы в гравитационном поле, описываемом метрикой gмюню, определяется простым пересчетом с помощью преобразования координат. Эта задача имеет чисто геометрический характер.

Приливные силы и кривизна пространства-времени. Если гравитационное поле неоднородно, то исключить его путем перехода к падающей системе отсчета сразу во всем пространстве или в конечной, но не очень малой области не удается. Действительно, рассмотрим, например, относительное движение в гравитационном поле Земли двух частиц, расположенных на расстоянии l друг от друга и падающих по радиусу к ее центру (рис. 1). При этом движении частицы 1 к 2 сближаются, ускорение их относительного сближения равно GMl/R3. Частицы 3 и 4 удаляются друг от друга с относительным ускорением 2GMl/R3. Это означает, что при

движении протяженного тела в неоднородном гравитационном поле в нем возникают так называемые приливные силы, стремящиеся его деформировать. Относительное приливное ускорение пары точек тела пропорционально расстоянию между этими точками и зависит от их взаимного расположения. Тензорный коэффициент пропорциональности характеризует степень неоднородности гравитационного поля и носит название тензора кривизны пространства-времени.

Поскольку гравитационное взаимодействие универсально к не существует „нейтральных“ по отношению к нему тел, то оказывается невозможным в чисто гравитационных экспериментах измерить „напряженность“ гравитационного поля. Подобные эксперименты позволяют определить только относительные ускорения, т. е. кривизну пространства-времени. Пространство-время является плоским, если его кривизна всюду обращается в ноль. В случае если кривизна не равна нулю, метрика не может быть плоской, однако в окрестности любой точки ее можно привести к виду:

gмюню(x)=etaмюню + (кривизна пространства-t)*(х-x0)2 +(поправки порядка(х—х0)3)

Уравнения Эйнштейна. Согласно Эйнштейну, кривизна пространства-времени пропорциональна плотности энергии-импульса вещества, порождающего гравитационное поле. Соответствующие уравнения, позволяющие определить метрику по заданному распределению вещества и тем самым восстановить геометрию пространства-времени, носят название уравнений Эйнштейна. В пределе, когда гравитационное поле слабое, т. е. гравитационный потенциал phi (ф) много меньше с2 и движение источника нерелятивистское, уравнения Эйнштейна сводятся к обычному уравнению для гравитационного потенциала в теории Ньютона. Тем самым предсказания теории Эйнштейна для слабых гравитационных полей носят характер малых поправок ~ф/с2 к известным результатам теории Ньютона. Именно эти поправки подвергаются экспериментальной проверке. Результаты всех наблюдений и экспериментов по проверке общей теории относительности, включая такие, как измерение красного смещения и запаздывания световых сигналов в гравитационном поле, измерение сдвига перигелия Меркурия и отклонение лучей света Солнцем, подтверждают эту теорию в области слабого поля, допуская отклонение от нее не более нескольких процентов.

Наиболее радикально отличаются предсказания теории Эйнштейна от ньютоновской теории гравитации в случае, когда гравитационное поле нельзя считать слабым. Качественно новым в этом случае является предсказание теорией Эйнштейна возможности нетривиальных глобальных свойств пространства-времени. Это касается прежде всего космологии, когда рассматриваются, области пространства и интервалы времени порядка-радиуса кривизны пространства-времени. В частности наше пространство может обладать нетривиальной топологией и походить не на плоскость, а на расширяющуюся сферу, являясь замкнутым, имея конечный объем, но не обладая никакими границами.