Космические объекты: Система Сатурна

ОГЛАВЛЕНИЕ

1. ВВЕДЕНИЕ

2. АТМОСФЕРА И ОБЛАЧНЫЙ СЛОЙ

3. МАГНИТНЫЕ СВОЙСТВА САТУРНА

4. КОЛЬЦА

5. СПУТНИКИ

6. СПУТНИКИ САТУРНА

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

В 1979—1981 годах космические аппараты «Пионер-11», «Вояджер-1» и «Вояджер-2» прошли близ Сатурна. Удалось исследовать планету, ее кольца и спутники с расстояний в тысячи раз более близких, чем при наблюдении с Земли.

ВВЕДЕНИЕ

«МИР ЛЕДЯНЫХ ЛУН»

Космическая геодезия — одна из наиболее молодых наук. так как она напрямую связана с космонавтикой и технологией, она получила бурное развитие. Если вначале использовали космические методы для исследования Земли, то со временем появилась возможность исследовать и другие небесные объекты.

Первым небесным телом, которое было изучено методами космической геодезии, явилась Луна. В изучении Луны преуспели как советские, так и американские ученые.

Затем был предпринят «штурм» Венеры и Марса.

Однако, в исследовании внешних планет приоритет получили американцы. Одним из ярчайших примеров этого успеха явились программы «Пионер» и «Вояджер». В программу этих проектов входило исследование планеты Сатурн. Полеты АМС позволили уточнить основные характеристики планеты и ее спутников.

Данный реферат основан на информации, полученной с помощью этих космических аппаратов.

АТМОСФЕРА И ОБЛАЧНЫЙ СЛОЙ

Всякий, кто наблюдал планеты в телескоп, знает, что на поверхности Сатурна, то есть на верхней границе его облачного покрова, заметно мало деталей и контраст их с окружающим фоном невелик. Этим Сатурн отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос, волн, узелков, свидетельствующих о значительной активности его атмосферы.

Возникает вопрос, действительно ли атмосферная активность Сатурна (например скорость ветра) ниже, чем у Юпитера, или же детали его облачного покрова просто хуже видны с Земли из-за большего расстояния (около 1,5 млрд. км.) и более скудного освещения Солнцем (почти в 3,5 раза слабее освещения Юпитера)?

«Вояджерам» удалось получить снимки облачного покрова Сатурна, на которых отчетливо запечатлена картина атмосферной циркуляции: десятки облачных поясов, простирающихся вдоль параллелей, а также отдельные вихри. Обнаружен, в частности, аналог Большого Красного Пят на Юпитера, хотя и меньших размеров. Установлено, что скорости ветров на Сатурне даже выше, чем на Юпитере: на экваторе 480 м/с, или 1700 км/ч. Число облачных поясов больше, чем на юпитере, и достигают они более высоких широт. Таким образом, снимки облачности демонстрируют своеобразие атмосферы Сатурна, которая даже активнее юпитерианской.

Метеорологические явления на Сатурне происходят при более низкой температуре, нежели в земной атмосфере. Поскольку Сатурн в 9,5 раз дальше от Солнца, чем Земля, он получает в 9,5 =90 раз меньше тепла.

Температура планеты на уровне верхней границы облачного покрова, где давление равно 0,1 атм, составляет всего 85 К, или -188 С. Интерес но, что за счет нагревания одним Солнцем даже такой температуры по лучить нельзя. Расчет показывает: в недрах Сатурна имеется свой собственный источник тепла, поток от которого в 2,5 раза больше, чем от Солнца. Сумма этих двух потоков и дает наблюдаемую температуру планеты.

Космические аппараты подробно исследовали химический состав надоблачной атмосферы Сатурна. В основном она состоит почти на 89% из водорода. На втором месте гелий (около 11% по массе). Отметим, что в атмосфере Юпитера его 19%. Дефицит гелия на Сатурне объясняют гравитационным разделением гелия и водорода в недрах планеты: гелий, который тяжелее, постепенно оседает на большие глубины (что, кстати говоря, высвобождает часть энергии, «подогревающей» Сатурн). Другие газы в атмосфере — метан, аммиак, этан, ацетилен, фосфин присутствуют в малых количествах. Метан при столь низкой температуре (около -188 С) находится в основном в капельно-жидком состоянии. Он образует облачный покров Сатурна.