Математические игры и головоломки

Если G (C)>0, то игрок, делающий следующий ход, допустим, это игрок A, может обеспечить себе выигрыш, если ему удастся перейти к «безопасной» комбинации S с G (S)=0. Действительно, по определению G (S) в этом случае либо S — пустая позиция, и тогда A уже выиграл, либо B следующим ходом должен перейти к «опасной» позиции U с G (U)>0 — и тогда всё повторяется снова. Такая игра после конечного числа ходов заканчивается победой A.

К подобным играм относится ним. Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

Более общий случай представляет игра Мура, которую также можно назвать k-ним. Правила её те же, что и в обычном ниме (1-ним), но здесь разрешается бать фишки из любого количества кучек, не превосходящего k.

Ещё одна подобная игра — Кегли. В ней фишки разложены в ряд, и при каждом ходе убирается одна какая-либо фишка или две соседние. При этом ряд может разбиться на два меньших ряда. Выигрывает тот, кто возьмёт последнюю фишку. Обобщённая вариация этой игры известна под именем игры Витхоффа.

Есть интересная вариация игры ним под названием «звёздный ним». Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре, изображённой на рис. 1, слева. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку выигрывает.

У игрока B при игре в звёздный ним есть выигрышная стратегия, использующая симметрию игровой доски (вообще, выигрышные стратегии многих математических игр строятся на этом). Представим, что отрезки прямых, соединяющие вершины звезды, — это нити. Тогда всю конфигурацию можно развернуть в окружность, топологически эквивалентную нитяной звезде. Если A снимает с окружности одну фишку, то B снимает две фишки с противоположного участка окружности. Если A берёт две фишки, то B снимает с противоположного участка окружности одну фишку. В обоих случаях на окружности остаются две группы из трёх фишек. Какую бы фишку (или какие бы фишки) ни взял A из одной группы, B берёт соответствующую фишку (или фишки) из другой группы. Ясно, что последняя фишка достанется игроку B.

Другие математические игры

В конце 60-х годов Дж. Леутуэйт из шотландского города Терсо изобрёл замечательную игру с искусно скрытой стратегией «парных ходов», обеспечивающей второму игроку заведомый выигрыш. На доске размером 5*5 квадратных клеток в шахматном порядке расставлены 13 чёрных и 12 белых фишек, после чего любая из чёрных фишек, например, стоящая на центральном поле, снимается (рис. 2, слева).

Игрок A ходит белыми фишками, игрок B — чёрными. Ходы делаются по вертикали и горизонтали. Проигравшим считается тот из игроков, кто первым не сможет сделать очередной ход. Если доску раскрасить подобно шахматной доске, то станет ясно, что каждая фишка со своего поля переходит на поле другого цвета и что ни одну фишку нельзя заставить ходить дважды. Следовательно, игра для каждого игрока не может продолжаться более 12 ходов. Но она может окончиться и раньше выигрышем для любого игрока, если только B не будет придерживаться рациональной стратегии.

Рациональная стратегия для игрока В состоит в том, чтобы мысленно представить себе всю матрицу (за исключением пустой клетки), покрытую двенадцатью неперекрывающимися костями домино. Как именно они разложены на доске, не имеет значения. На рис. 2, справа показан один из способов покрытия доски костями домино. Какой бы ход ни сделал игрок А, В просто делает ход на ту кость домино, которую только что покинул А. При такой стратегии у В всегда есть ход после очередного хода А, поэтому Взаведомо выигрывает за 12 или за меньшее число ходов.

В игру Леутуэйта можно играть не только фишками на доске, но и квадратными плитками или кубиками, передвигаемыми внутри плоской коробочки, на дне которой начерчена матрица. Предположим теперь, что в правила игры внесена поправка, позволяющая любому игроку в любое время ходить любым числом (от 1 до 4) фишек, стоящих на одной горизонтали или вертикали, если первая и последняя фишки в выбранной им горизонтали или вертикали «его» цвета. Перед нами великолепный пример того, как тривиальное (на первый взгляд) изменение правила приводит к резкому усложнению анализа игры. Леутуэйту не удалось найти выигрышную стратегию ни для одного из игроков в этом варианте игры.

Большинство игр, рассмотренных нами, имели выигрышную стратегию, но это не значит, что практически у всех подобных игр она существует. Есть множество игр, выигрышную стратегию в которых на сегодняшний день ещё не изобрели, а есть много и таких, у которых таковой вообще нет.