Применение графиков в решении уравнений

Применение графиков в решении уравнений

Основная часть:

Применение графиков в решении уравнений.

I)Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение: x2+px+q=0;

Перепишем его так: x2=-px-q.(1)

Построим графики зависимостей: y=x2 и y=-px-q.

График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения: чертим параболу у=х2, чертим (по точкам) прямую у=-рх-q.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

Примеры:

1.Решить уравнение:4x2-12x+7=0

Представим его в виде x2=3x-7/4.

Построим параболу y=x2 и прямую y=3x-7/4.

Рисунок 1.

Для построения прямой можно взять, например, точки (0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение: x2-x+1=0.

Запишем уравнение в виде: x2=x-1.

Построив параболу у=х2 и прямую у=х-1, увидим, что они не пересекаются (рисунок 2), значит уравнение не имеет корней.

Рисунок 2.

Проверим это. Вычислим дискриминант:

D=(-1)2−4=-3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x2-2x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую точку (прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).

II) Системы уравнений.

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 -2 -парабола, уравнения х2 2=4 — окружность, и т. д.

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого — многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.

Пример1: решить систему ⌠ x2 +y2 =25 (1)

⌠y=-x2+2x+5 (2)

Построим в одной системе координат графики уравнений (Рисунок4):

Построим в одной системе координат графи)

х2 2=25 и у=-х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т. е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А (-2,2; -4,5), В (0;5), С (2,2;4,5), D (4;-3).Следовательно, система уравнений имеет четыре решения:

х1≈-2,2, у1≈-4,5; х2≈0, у2≈5;

х3≈2,2, у3≈4,5; х4≈4, у4≈-3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье — приближёнными.

III) Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5) Из графика видно, что уравнение имеет 2 решения: х=2πп, где пЄZ и х=π/2+2πk, где kЄZ (Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение: tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики (См. рисунок 6) функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)

Применение графиков в решении неравенств.

1)Неравенства с модулем.

Пример1.

Решить неравенство |x-1|+|x+1|<4.

На интеграле (-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству -2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл (-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f (x)=|x-1|+|x+1| и y=4.

Рисунок 7.

На интеграле (-2;2) график функции y=f (x) расположен под графиком функции у=4, а это означает, что неравенство f (x)<4 справедливо. Ответ:(-2;2)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство√а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру, а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Пример1:

Решить неравенство|х-а|+|х+а|<b, a<>0.

Для решения данного неравенства с двумя параметрами a u b воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f (x)=|x-a|+|x+a| u y=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f (x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при -b/2<x<b/2,так как при этих значениях переменной кривая y=|x+a|+|x-a| расположена под прямой y=b.