Модель управления конфликтными потоками в классе алгоритмов с упреждением при влиянии случайной среды на структуру входных потоков и загрузку системы

" Модель управления конфликтными потоками в классе алгоритмов с упреждением при влиянии случайной среды на структуру входных потоков и загрузку системы."

Общая характеристика рассматриваемой темы.

Становление теории массового обслуживания связывают с непрерывным расширением телефонных сетей в крупных городах Европы и Америки и необходимостью решения задач о задержке вызовов в этих системах.

Такие задачи были описаны еще в 1907 г. Ф.В. Иоханнсенном, а первые шаги по их решению предприняты в 1909 г. датским математиком А.К. Эрлангом. Чьи работы стали ядром классической теории массового обслуживания.

Скачок в развитии вычислительной техники за последние несколько лет привёл к появлению нового важного направления -теории управляемых систем массового обслуживания, а также способствовал применению результатов исследований к важным практическим задачам. Это направление, в современной теории массового обслуживания, является одним из актуальных и перспективных. Согласно определению, данному УСМО в работе \2\, управляемая система массового обслуживания -это такая система обслуживания, в которой параметры составляющих ее элементов (входные потоки требований, дисциплина очереди, структура системы, длительности и дисциплины обслуживания) допускают управляющее воздействие. Необходимым условием полноты описания такой системы является задание правила 'стратегии' использования управляющих воздействий во времени. Основываясь на работах \3,4\ можно предложить следующую (довольно условную) классификацию, вытекающую из понятия УСМО:

  • системы с управляемым доступом требований в СМО;
  • системы с управляемой интенсивностью обслуживания;
  • системы с управляемой структурой;
  • системы с управляемой дисциплиной обслуживания;
  • системы алгоритмического управления потоками заявок.

В настоящей работе поставлен вопрос об исследовании систем обслуживания с переменной структурой, представляющих собой математические модели поведения сложных реальных объектов с управлением входными потоками требований в условиях их конфликтности. Прежде всего, сюда следует отнести системы управления движением транспорта на перекрестках, системы управления микросварочными комплексами при сборке интегральных микросхем, системы управления воздушным транспортом в аэропортах с несколькими взлетно-посадочными полосами. Базовый подход к анализу и оптимизации систем обслуживания с переменной структурой изложен в докторской диссертации \5\ М.А. Федоткина.

Особое место среди приложений теории систем обслуживания с переменной структурой занимают задачи о регулировании дорожного движения. Злободневность этих задач определенна неизменно возрастающим парком автомобилей во всем мире и возникающими в связи с этим весьма острыми экономическими, экологическими и социальными проблемами. Анализ процессов управления конфликтными потоками для нескольких классов однородных алгоритмов содержится в работах М.А. Федоткина.

Обычно, задачи оптимизации систем управления транспортными потоками решаются при наличии гипотезы о том, что система работает в стационарном режиме. Любопытны, так же и ситуации, когда из-за непредвиденных обстоятельств возникают даже не очень продолжительные задержки в работе обслуживающего устройства. Восстановление стационарного режима, после таких задержек, может быть довольно долгим по времени процессом.

Большинство работ, касающихся решения транспортных задач, основано на предположении, что длительности интервалов между последовательными поступлениями машин в систему распределены по показательному закону. Это позволяет представлять входные потоки потоками Пуассона. Однако при плохих погодных условиях нельзя говорить о независимости движения машин. Из-за затрудненного обгона на дороге образуются автоколонны -транспортные пачки. В этом случае транспортные потоки не являются потоками Пуассона. Для потоков такой структуры адекватной математической моделью является поток Бартлетта.

Математическое описание потоков требований, используемое в данной работе, выполнено в рамках нового нелокального подхода к изучению потоков заявок \5,6\.

Цель данной работы.

Ставится вопрос об исследовании динамики системы управления тремя конфликтными потоками требований, функционирующих в случайной среде (в данном случае -состояние погоды), определяющей вероятностную структуру входных потоков, а так же влияющей на процесс обслуживания требований. В настоящей работе сделана попытка вероятностного описания функционирования системы управления конфликтными потоками требований в классе алгоритмов с упреждением.

Математическое описание элементов системы.

1.Описание работы системы на содержательном уровне.

Вопрос о применении алгоритмов с обратной связью (учитывающих наличие и размер очередей, скорости поступления требований, интервал между последовательными требованиями, тип требований и т. д.) возникает при более детальном рассмотрении так называемых циклических алгоритмов, в которых используется только информация о входных потоках и потоках насыщения. Такой режим управления (в котором обслуживание потоков требований происходит строго по заранее определённому закону) чаще всего применяется в системах обслуживания с большой загрузкой, когда интенсивности поступления требований по различным потокам практически одинаковы. Тем не менее, в случае появления в потоках разрывов (нет поступающих заявок), циклический способ управления является не целесообразным: для некоторого потока обслуживающее устройство работает в холостом режиме, в то время как по другим потокам имеются очереди заявок на обслуживание. В таких случаях рациональнее применять другие управляющие алгоритмы, использующие дополнительную информацию о структуре входных потоков требований. Однако, воплощение в жизнь подобных алгоритмов требует применения дополнительных технических средств, а это тотчас приводит к удорожанию и усложнению системы обслуживания. Появляется вопрос о разработки простейших алгоритмов с обратной связью, использующие некоторую минимальную информацию о системе и не требуют применения сложных технических устройств. В настоящей работе рассмотрен простой алгоритм с обратной связью, представляющий собой модификацию циклического алгоритма, при котором априори выделяются наиболее интенсивные входные потоки, потоки наиболее важные в смысле оперативности обслуживания и потоки малой интенсивности. В процессе обслуживания такой алгоритм учитывает наличие очередей по некоторым потокам, требующим быстрого обслуживания.

Назовём потоки конфликтными, если, во-первых, невозможно суммировать некоторые потоки и свести задачу к одномерному случаю, во-вторых, обслуживание заявок конфликтных потоков осуществляется в непересекающиеся интервалы времени, в-третьих, существуют интервалы недоступности, в течение которых потоки не обслуживаются.