Математическая логика и теория алгоритмов

Математическая логика и теория алгоритмов

Содержание.

  1. Постановка задачи.
  2. Построение модели.
  3. Описание алгоритма
  4. Доказательство правильности алгоритма
  5. Блок-схема алгоритма
  6. Описание переменных и программа
  7. Расчёт вычислительной сложности
  8. Тестирование
  9. Список литературы

Постановка задачи.

Перечислить все способы расстановки n ферзей на шахматной доске n на n, при которых они не бьют друг друга.

Построение модели.

Очевидно, на каждой из n горизонталей должно стоять по ферзю. Будем называть k-позицией (для k = 0, 1,…, n) произвольную расстановку k ферзей на k нижних горизонталях (ферзи могут бить друг друга). Нарисуем «дерево позиций»: его корнем будет единственная 0-позиция, а из каждой k-позиции выходит n стрелок вверх в (k+1)-позиции. Эти n позиций отличаются положением ферзя на (k+1)-ой горизонтали. Будем считать, что расположение их на рисунке соответствует положению этого ферзя: левее та позиция, в которой ферзь расположен левее.

Дерево позиций для n = 2

Данное дерево представлено только для наглядности и простоты представления для n=2.

Среди позиций этого дерева нам надо отобрать те n-позиции, в которых ферзи не бьют друг друга. Программа будет «обходить дерево» и искать их. Чтобы не делать лишней работы, заметим вот что: если в какой-то k-позиции ферзи бьют друг друга, то ставить дальнейших ферзей смысла нет. Поэтому, обнаружив это, мы будем прекращать построение дерева в этом направлении.

Точнее, назовем k-позицию допустимой, если после удаления верхнего ферзя оставшиеся не бьют друг друга. Наша программа будет рассматривать только допустимые позиции.

Описание алгоритма.

Разобьем задачу на две части: (1) обход произвольного дерева и (2) реализацию дерева допустимых позиций.

Сформулируем задачу обхода произвольного дерева. Будем считать, что у нас имеется Робот, который в каждый момент находится в одной из вершин дерева. Он умеет выполнять команды:

вверх_налево (идти по самой левой из выходящих вверх стрелок)

вправо (перейти в соседнюю справа вершину)

вниз (спуститься вниз на один уровень)

вверх_налево

вправо

вниз

и проверки, соответствующие возможности выполнить каждую из команд, называемые «есть_сверху», «есть_справа», «есть_снизу» (последняя истинна всюду, кроме корня). Обратите внимание, что команда «вправо» позволяет перейти лишь к «родному брату», но не к «двоюродному».

Будем считать, что у Робота есть команда «обработать» и что его задача — обработать все листья (вершины, из которых нет стрелок вверх, то есть где условие «есть_сверху» ложно). Для нашей шахматной задачи команде обработать будет соответствовать проверка и печать позиции ферзей.

Доказательство правильности приводимой далее программы использует такие определения. Пусть фиксировано положение Робота в одной из вершин дерева. Тогда все листья дерева разбиваются на три категории: над Роботом, левее Робота и правее Робота. (Путь из корня в лист может проходить через вершину с Роботом, сворачивать влево, не доходя до нее и сворачивать вправо, не доходя до нее.) Через (ОЛ) обозначим условие «обработаны все листья левее Робота», а через (ОЛН) — условие «обработаны все листья левее и над Роботом».

Нам понадобится такая процедура:

procedure вверх_до_упора_и_обработать

{дано: (ОЛ), надо: (ОЛН)}

begin

{инвариант: ОЛ}

while есть_сверху do begin

вверх_налево

end

{ОЛ, Робот в листе}

обработать;