Исследование наилучших приближений непрерывных периодических функций тригонометрическими тригонометрическими полиномами

Поэтому

(6.21)

Итак, доказана сходимость ряда , а вместе с этим установлена и формула (6.20). Из (6.20) и (6.21) вытекает, что

и теорема доказана.

В некоторых случаях оценка (6.18) может быть упрощена. Пусть, например,

(6.22)

Тогда

Поэтому при выполнении условия (6.22) вместо (6.18) можно написать

Следствие 10.1. Пусть r-натуральное число и сходится ряд

Тогда

(6.23)

Теорема 11. Пусть r-натуральное число и для функции f сходится ряд

Тогда для любого натурального k и любого

(6.24)

Доказательство. Имеем

Отсюда, по лемме 10,

Далее, согласно теореме 10,

Воспользуемся теперь леммой 9. Получаем

Заметим, что

Таким образом, если , то

и теорема доказана.

§ 7. Основная теорема.

Обратимся теперь к рассмотрению следующего вопроса: каковы необходимые и достаточные условия того, чтобы

где -заданная невозрастающая функция?

Насколько нам известно, эта задача не была до сих пор решена даже для случая . Мы решим её для функций сравнения .

Лемма 11. Пусть и для некоторого натурального

(7.1)

Тогда существует такая константа с>0, что

(7.2)

Доказательство. Согласно (7.1), найдутся две такие константы С60>0 и C61>0, что

(7.3)

Последнее из этих неравенств, теорема 1 и теорема 3 влекут неравенство

(7.4)

В силу (2.1) и (2.2), имеем

Отсюда

Пользуясь (7.3) и (7.4), находим, далее

(7.5)

Вспомним теперь, что . Это даёт нам для

Подставляя эту оценку в (7.5), получаем

(7.6)

Мы можем без ограничения общности считать, что здесь . Положим в (7.6)

Тогда получим окончательно

и лемма доказана.

Основная теорема. Пусть . Для того чтобы

(7.7)

необходимо, чтобы для всех натуральных , и достаточно, чтобы для некоторого натурального

. (7.8)

Доказательство. Пусть имеет место (7.7), т. е. найдутся две положительные константы С67 и С68, для которых

(7.9)

Тогда, по теореме 1 и в силу первой половины неравенства (7.9), для любого k имеем

т.е.

Отсюда, в силу ,

и если , то, ввиду монотонности и ,

Далее, из второй половины неравенства (7.9) и теоремы 9 вытекает существование константы С72 такой, что для любого

Этим заканчивается доказательство необходимости условия (7.8).

Пусть имеет место (7.8):

(7.10)

с С73>0. Тогда по теореме 1 и в силу второй половины неравенства (6.10),

а по лемме 11,

где С77>0.

Таким образом, установлена достаточность условия (7.8), и основная теорема полностью доказана.

Приведём в заключение обобщение леммы 11 на тот случай, когда оценки сверху и снизу имеют разные порядки.

Теорема 12. Пусть и

(7.11)

Тогда

(7.12)

Доказательство. Имеем, как при доказательстве леммы 11,

Положим здесь

Тогда получим, что

Теорема доказана.

§ 8. Решение задач.

Пример 1. Пусть Тогда при каждом

Пример 2. Пусть график функции f(x) имеет вид, изображённый на рис. 8.1. Тогда график функции показан на рис. 8.2.

Рис. 8.1. Рис. 8.2.

Пример 3. Пусть при

и пусть — периодическое продолжение функции на всю ось.

Рис. 8.3.

Рис. 8.4.

Тогда если функцию рассматривать на сегменте длины так, что (рис. 8.3)

то (рис. 8.4)

т.е. модуль непрерывности функции в точке не достигает своего наибольшего значения и, следовательно, отличается от модуля непрерывности этой функции на всей оси.

Пример 4. При функция

является модулем непрерывности.

Пример 5. При функция

является модулем непрерывности.

Пример 6. При имеем так что при всех будет

.

Литература.

  1. Бернштейн С.Н. О свойствах однородных функциональных классов // Доклады Ак. Наук СССР,-1947.-№ 57.-с.111−114.
  2. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№ 65.-с.135−137.
  3. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени // Сообщ. Харьк. Матем. о-ва (2), -1912.-№ 13.-с.49−144.
  4. Бернштейн С.Н. Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть I,-М.-Л.,-1937.
  5. Никольский С. Обобщение одного неравенства С.Н.Бернштейна // Доклады Ак. Наук СССР,-1948.-№ 65.-с.135−137.
  6. Гончаров В.Л. Теория интерполирования и приближения функций.-М.-Л.,-1934.
  7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. -М.: Наука.-1977.-с.512.
  8. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№ 65.-с.135−137.
  9. Тиман А.Ф. Теория приближения функций функций действительного переменного. -М.:ГИФМЛ,-1960.-с. 624.
  10. Ахиезер Н.И. Лекции по теории аппроксимаций.-М.:ГИТТЛ,-1947.-324.
  11. Арестов В.В. О равномерной регуляризации задачи вычисления значений оператора // Математические заметки,-т.22.-1977.-№ 2.-с.231−243.
  12. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Изв. АН СССР-Математика,-1931.-№ 15.-с.219−242.