Исследование наилучших приближений непрерывных периодических функций тригонометрическими тригонометрическими полиномами

Оглавление.

Наименование

Введение

§ 1. Некоторые вспомогательные определения

§ 2. Простейшие свойства модулей нерперывности

§ 3. Обобщение теоремы Джексона

§ 4. Обобщение неравенства С.Н.Бернштейна

§ 5. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную функцию

§ 6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена

§ 7. Основная теорема

§ 8. Решение задач

Литература

Введение

Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.

Дипломная работа носит реферативный характер и состоит из «Введения» и восьми параграфов.

В настоящей работе мы рассматриваем следующие задачи:

  1. При каких ограничениях на непрерывную функцию F(u)(-1 Ј u Ј+1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок j (n-1 )?
  2. При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок j (n-1 )?

Подстановка u=cos (x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.

Мы ограничимся случаем, когда j(d) ОNa, для некоторого a, где j(d) — функция сравнения р-го порядка и для 0<d<h Ј p

С.Н.Бернштейн, Д. Джексон и Ш. Валле-Пуссен получили зависимости между оценками сверху для En[f] и дифференциальными свойствами f. Некоторые дополнения к их теоремам доказаны А.Зигмундом. нам предстоит, поэтому, получить зависимости между дифференциальными свойствами f и оценками En[f] снизу. Впервые задачами типа 1 занимался С.Н.Бернштейн. А именно, им получено ассимптотическое равенство:

,

где m — некоторое число.

Наша основная теорема формулируется следующим образом:

Пусть j ОNa.Для того чтобы

необходимо, чтобы для любого натурального k>a, и достаточно, чтобы для некоторого натурального k>a

где

Изложим теперь кратко содержание каждого из параграфов работы.

В § 1 даётся ряд вспомогательных определений, которые понадобятся в дальнейшей работе.

В § 2 выводятся основные свойства модулей непрерывности высших порядков. Почти все эти свойства используются в дальнейшем тексте.

§ 3 посвящен обобщению теоремы Джексона. Как известно, Джексон доказал следующую теорему: если f имеет непрерывную r-ую производную f ®, то

Таким образом, теорема Джексона дает оценку сверху для наилучших приближений, если известны дифференциальные свойства аппроксимируемой функции.

В 1947 г. появилась работа С.Н.Бернштейна [1]. Одна из теорем этой работы содержит в качестве следствия такое предложение: пусть

Тогда

В § 3 доказываем:

(*)

В § 4 формулируется доказанное в работе С.Б.Стечкина [2] обобщение известного неравенства С.Н.Бернштейна [3], [4] для производных от тригонометрического полинома. Мы приводим затем ряд следствий из нашего неравенства (*). Они играют существенную роль при доказательстве теорем § 5.

В § 5 рассматривается следующая задача. Пусть тригонометрический полином tn, близок в равномерной метрике к заданной функции f или последовательность полиномов {tn} достаточно хорошо аппроксимирует заданную функцию f. Как связаны тогда дифференциальные свойства f с дифференциальными свойствами tn?

Если tn, образуется из f посредством регулярного метода суммирования рядов Фурье, то ответ тривиален: для того чтобы , необходимо и достаточно, чтобы равномерно относительно n. (fОHk[w], если ).

Оказывается, что этот результат сохраняется и для полиномов наилучшего приближения: для того, чтобы равномерно относительно n.

Отметим еще один результат параграфа: для того чтобы , необходимо и достаточно чтобы

.

§ 6 посвящён «обратным теоремам» теории приближения.

Известно предложение: пусть

.

Тогда, если a не целое, r=[a], b=a-r, то f имеет нерперывную производную .

Случай целого a рассмотрен Зигмундом. В этом случае

.

Нетрудно показать, что эти два предложения эквивалентны следующему: пусть 0<a<k и

.

Тогда

.

В работе [3] С.Н.Бернштейн доказал также эквивалентность условий и .

Мы переносим эти теоремы на условия вида

,

где j ОNa.

Кроме того, в этом параграфе доказано, например, такое предложение: пусть k — натуральное число и

;

для того, чтобы , необходимо и достаточно выполнение условия

.

В конце параграфа даются уточнения теорем Валле-Пуссена.

В § 7 доказывается основная теорема. Мы даём здесь же оценку En[f] снизу, если

.

Именно, тогда

Случай a=0 установлен С.Н.Бернштейном [3].

В § 8 мы рассматриваем несколько решений задач с использованием различных модулей непрерывности.

§ 1. Некоторые вспомогательные определения.

В работе рассматриваются непрерывные функции f с периодом 2p и их приближение тригонометрическими полиномами. Через tn(x)обозначается тригонометрический полином порядка не выше n, а через tn*(x)=tn*(x, f)-тригонометрический полином, наименее уклоняющийся от f среди всех tn(x). Мы полагаем и пишем

Введём ряд определений.

Определение 1. При каждом фиксированном классом Липшица порядка a называется множество всех непрерывных функция f, модуль непрерывности каждой из которых удовлетворяет условию

где С8-какая-нибудь положительная постоянная, которая не зависит от d и которая, вообще говоря, является различной для разных функций. Этот класс обозначается Ha или Lip a.

Определение 2. Обозначим при фиксированном натуральном r через W®L класс функций f, которая имеет абсолютно непрерывные производные до (r-1) порядка и у которой r-я производная принадлежит классу L.

Определение 3. Для непрерывной на [a, b] функции f (x)назовём модулем непрерывности первого порядка или же просто модулем непрерывности функцию w(d)=w(f;d), определённую на [0, b-a] при помощи следующего равенства:

(1.1)

или, что-то же самое,

(1.1')

Свойства модуля непрерывности:

  1. w (0)=0;
  2. w (d) есть функция, монотонно возрастающая;
  3. w (d) есть функция непрерывная;
  4. w (d) есть функция полуаддитивная в том смысле, что для любых и

(1.2)

Доказательство. Свойство 1) вытекает из определения модуля непрерывности.

Свойство 2) вытекает из того, что при больших d нам приходится рассматривать sup на более широком множестве значений h. Свойство 4) следует из того, что если мы число представим в виде h=h1+h2, и , то получим

Из неравенства (1.2) вытекает, что если то т. е. (1.3)

Теперь докажем свойство 3). Так как функция f (x) равномерно непрерывна на [a, b], то при и, следовательно, для любыхd,

при

а это и означает, что функция w (d) непрерывна.

Определение 4. Пусть функция f (x)определена на сегменте [a, b]. Тогда для любого натурального k и любых и h>0 таких, что k-й разностью функции f в точке x с шагом h называется величина

(1.4)

а при и h>0 таких, что k-й симметричной разностью — величина

(1.4')

Лемма 1. При любых натуральных j и k справедливо равенство

(1.5)

Доказательство. Действительно, так как при любом натуральном k

то

Лемма доказана.

Лемма 2. При любых натуральных k и n верна формула:

(1.6)

Доказательство. Воспользуемся индукцией по k. При k=1 тождество (1.6) проверяется непосредственно:

.

Предполагая его справедливость при k-1 (kі2), получим

Лемма доказана.

Определение 5. Если измеримая периода (b-a) функция f(xLq (Lq-класс всех вещественных измеримых на [a, b] функции f(x)), то под её интегральным модулем гладкости порядка kі1 понимают функцию

Лемма 3. Если то справедливо

(1.7)

Доказательство. В самом деле,

и так далее. Лемма доказана.

Определение 6. Если функция f (x) ограничена на [a, b], то под её модулем гладкости порядка kі1 понимают функцию

заданную для неотрицательных значений и в случае, когда k=1, представляющую собой модуль непрерывности.

Свойства модулей гладкости:

    1. есть функция, монотонно возрастающая;
    2. есть функция непрерывная;
    3. При любом натуральном n имеет место (точное) неравенство

(1.8)

а при любом -неравенство

(1.8')

5) Если функция f(x)имеет всюду на [a, b] непрерывные производные до (r-1)-го порядка, и при этом (r-1)-я производная , то

(1.9)

Доказательство. 1) Свойство 1) немедленно вытекает из того, что

2) Свойство 2) доказывается точно так же, как и для случая обычного модуля непрерывности.

3) Предполагая для определённости, что d>d', получим

Этим непрерывность функции wk(d) доказана.

4) Используя равенство лемму 2 § 1, имеем

Этим неравенство (1.8) доказано. Неравенство (1.8') следует из монотонности функции wk(t) и неравенства (1.8).

5) Используя равенства лемму 1 и лемму 3 § 1, получим

Определение 7. Пусть k-натуральное число. Будем говорить, что функция есть модуль непрерывности k-го порядка функции f, если

где -конечная разность функции f k-го порядка с шагом h:

Среди модулей непрерывности всех порядков особенно важное значение имеют случаи k=1 и k=2. Случай k=1 является классическим; вместо мы будем писать просто и называть эту функцию модулем непрерывности; функцию мы будем называть модулем гладкости.

Определение 8. Зададим натуральное число k. Будем говорить, что функция -есть функция сравнения k-го порядка, если она удовлетворяет следующим условиям:

    1. определена для ,
    2. не убывает,
    3. ,

Нетрудно показать, что если f є 0, то есть функция сравнения k-го порядка (см. Лемму 5 § 2).

Определение 9. Зафиксируем натуральное число k и функцию сравнения k-го порядка . Будем говорить, что функция f принадлежит к классу , если найдётся константа С10>0 такая, что

Вместо будем писать просто Hka.

Если для последовательности функций {fn} (n=1,2,…)

где С10 не зависит от n, то будем писать: равномерно относительно n.

Понятие классов является естественным обобщением классов Липшица и классов функций, имеющих ограниченную k-ю производную.

Определение 10. Зафиксируем число a>0 и обозначим через p наименьшее натуральное число, не меньше чем a(p=-[- a]). Будем говорить, что функция принадлежит к классу , если она

1) есть функция сравнения p-го порядка и

2) удовлетворяет условию: существует константа С11>0 такая, что для

Условие 2) является небольшим ослаблением условия « не убывает». Функции класса Na будут играть основную роль во всём дальнейшем изложении.

Определение 11. Будем говорить, что функция имеет порядок , если найдутся две положительные константы С12и С13 такие, что для всех t, для которых определены функции и ,

.

При выполнении этих условий будем писать

.

Определение 12. Ядром Дирихле n-го порядка называется функция

(1.10)

Это ядро является тригонометрическим полиномом порядка n и при этом

(1.10')

Определение 13. Ядром Фейера n-го порядка называется функция

(1.11)

Ядро Фейера Fn(t)является средним арифметическим первых n ядер Дирихле, и значит, является тригонометрическим полиномом порядка (n-1). Так что имеют место равенства

(1.11')

(1.11'')

где Dk(t)-ядра Дирихле.

Определение 14. Ядром Джексона n-го порядка называется функция

(1.12)

Свойства ядер Джексона.

а) При каждом n ядро Jn(t) является чётным неотрицательным тригонометрическим полиномом порядка 2n-2 вида

,

где jk=jk(n) — некоторые числа

б)

в)

г)

Доказательство.

а) Учитывая, что для ядер Fn(t) Фейера имеют место равенства

получим

где jk(k=1,2,…, 2n-2) -некоторые числа, и в частности, в силу ортогональности тригонометрической системы функций найдем

Этим свойство а) доказано.

б) Это равенство следует из равенства, полученного для j0.

в) Так как при любом и при (**), то

г) Совершенно аналогично случаю в) получим

Что и требовалось доказать.

Определение 15. Ядром типа Джексона порядка n называется функция

, (1.13)

n=1,2,3,…,k-натуральное, где

(1.13')

Ядра типа Джексона обладают следующими свойствами:

а)

б) При фиксированном натуральном k и произвольном n ядро Jn, k(t)

является чётным неотрицательным тригонометрическим полиномом порядка k(n-1)

в) n2k-1, т. е. существуют постоянные С14>0 и С15>0, такие, что при всех n=1,2,3,… будет

г) При любом s>0 имеет место неравенство

д) При любом натуральном

Доказательство свойств ядер типа Джексона.

а) Это свойство вытекает из равенств определения

б) Это свойство следует из 1-го неравенства определения и из того, что в силу равенств (1.11) и (1.11‘') будет