Использование дифференциальных уравнений в частных производных для моделирования реальных процессов

СОДЕРЖАНИЕ

Введение

Глава 1. Уравнения гиперболического типа.

§ 1.1. Задачи, приводящие к уравнениям гиперболического типа

1.1.1. Уравнение колебаний струны

1.1.2. Уравнение электрических колебаний в проводах

§ 1.2. Метод разделения переменных

1.2.1. Уравнение свободных колебаний струны

Глава 2. Уравнения параболического типа.

§ 2.1. Задачи, приводящие к уравнениям параболического типа

2.1.1. Уравнение распространения тепла в стержне

2.1.2. Распространение тепла в пространстве

§ 2.2. Температурные волны

Глава 3. Моделирование с помощью дифференциальных уравнений в частных производных.

§ 3.1. Дифракция излучения на сферической частице

Заключение

Литература

ВВЕДЕНИЕ

Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом «Интегральном исчислении» Л. Эйлера.

Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V — два решения, то функция a U + b V при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.

Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т. д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.

Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.

Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.

Глава 1. УРАВНЕНИЯ ГИПЕРБОЛИЧЕСКОГО ТИПА

§ 1.1. Задачи, приводящие к уравнениям гиперболического типа.

Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа

называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т. д.

1.1.1. Уравнение колебаний струны.

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины в начальный момент направлена по отрезку оси Оx от 0 до . Предположим, что концы струны закреплены в точках . Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения — говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией , которая дает величину перемещения точки струны с абсциссой x в момент t.

Рис. 1.1.

Так как мы рассматриваем малые отклонения струны в плоскости , то будем предполагать, что длина элемента струны равняется ее проекции на ось Ox, т. е. .1 Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.

Рассмотрим элемент струны .

Рис. 1.2.

На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы . Тогда проекция на ось Ou сил, действующих на элемент , будет равна . Так как угол мал, то можно положить , и мы будем иметь:

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть — линейная плотность струны. Тогда масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь:

.

Сокращая на и обозначая , получаем уравнение движения

. (1)

Это и есть волновое уравнение — уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны , и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, как мы предполагали, концы струны при неподвижны. Тогда при любом t должны выполнятся равенства:

(2')

(2'')

Эти равенства являются граничными условиями для нашей задачи.

В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть

(3')

Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией . Таким образом, должно быть

(3'')

Условия (3') и (3'') являются начальными условиями.

Замечание. В частности, может быть или . Если же и , то струна будет находится в покое, следовательно, .

1.1.2. Уравнение электрических колебаний в проводах.

Как указывалось выше, к уравнению (1) приводит и задача об электрических колебаниях в проводах. Электрический ток в проводе характеризуется величиной i (x, t) и напряжением v (x, t), которые зависят от координаты x точки провода и от времени t. Рассматривая элемент провода , можем написать, что падение напряжения на элементе равно . Это падение напряжения складывается из омического, равного , и индуктивного, равного . Итак,

(4)

где R и L — сопротивление и коэффициент индуктивности, рассчитанные на единицу длины провода. Знак минус взят потому, что ток течет в направлении, обратном возрастанию v. Сокращая на , получаем уравнение

(5)

Далее, разность токов, выходящего из элемента и входящего в него за время , будет

Она расходуется на зарядку элемента, равную , и на утечку через боковую поверхность провода вследствие несовершенства изоляции, равную (здесь, А — коэффициент утечки). Приравнивая эти выражения и сокращая на , получим уравнение

(6)

Уравнения (5) и (6)принято называть телеграфными уравнениями.

Из системы уравнений (5) и (6) можно получить уравнение, содержащее только искомую функцию i (x, t), и уравнение, содержащее только искомую функцию v (x, t). Продифференцируем члены уравнения (6) по x; члены уравнения (5) продифференцируем по t и умножим их на С. Произведя вычитание, получим: