Интегральное исчисление. Исторический очерк

Ньютон и Лейбниц — рождение противоречий.

Однако в подходе Ньютона-Лейбница крылось серьёзное противоречие.

Лейбниц и его последователи — братья Бернулли, Лопиталь и другие — трактовали дифференциалы как бесконечно малые разности обычных конечных величин, как тогда говорили — «реальных» величин «низшей» математики. Поэтому они обращались с теми и другими одинаково и в исчислении применяли к первым те же приемы, которые справедливы при действиях со вторыми. Вместе с тем выяснилось, что таким образом трактуемым бесконечно малым присуще свойство, противоречащее одному основному свойству основных конечных величин: если А — конечная величина, а a — бесконечно малая, то, чтобы результат исчисления получался совершенно точным, оказалось необходимым проводить вычисления в предположении, что А+a =А.

Дифференциальное исчисление, значение которого для развития науки и техники было вне сомнений, оказалось в парадоксальном положении: чтобы его методами получить точный результат, надо было исходить из ошибочного утверждения.

Ньютон пытался обосновать дифференциальное исчисление на законах механики и понятии предела. Но ему не удалось освободить свое исчисление флюксий от недостатков, присущих дифференциальному исчислению Лейбница. В практике вычисления Ньютон, как и Лейбниц, применял принцип отбрасывания бесконечно малых.

Такая непоследовательность позволила назвать дифференциальное исчисление Лейбница-Ньютона мистическим. Этим в первую очередь подчеркивалось, что Лейбниц и Ньютон вводили в дифференциальное исчисление бесконечно малые величины метафизически, сразу полагая их существующими, без выяснения их возникновения и развития и без анализа природы их специфических свойств.

Попытки построить анализ бесконечно малых и теорию рядов в полном соответствии с основными понятиями и истинами «низшей» математики с самого начала к успешным результатам не привели. Поэтому Лейбниц и его последователи пытались оправдать принципы анализа бесконечно малых путем сравнения бесконечно малой с песчинкой, которой можно пренебречь при вычислении высоты горы, посредством ссылок на вероятность и т. п.

Другая попытка была предпринята в конце XVIII века. Известный немецкий математик Вессель предложил оставить анализ бесконечно малых в анализе в качестве «полезных вспомогательных функций». Однако, такая трактовка широкого распространения не получила — математики знали механическое и геометрическое истолкование dx и dy.

Примерно с последней четверти XVIII века область приложений математического анализа начинает значительно перекрывать границы его обычного приложения в механике и геометрии. Ещё быстрее развертывается этот процесс в первой четверти XIX века.

Математики пытались сначала решать новые задачи методами, разработанными классиками XVIII века — Эйлером, Даламбером, Лагранжем и другими. Однако, вскоре выяснилось, что методы классиков недостаточны, что надо развивать новые, более общие и сильные методы. Выяснилось также, что недостаточность методов классиков нередко связана с узостью трактовки основных понятий, с «изгоняемым» понятием о бесконечно малом, с «исключениями», которые раньше оставались в тени.

Поясним сказанное одним примером.

Ньютон и Лейбниц разработали две трактовки понятия обычного определенного интеграла.