Интегральное исчисление. Исторический очерк

Из истории интегрального исчисления.

План.

1. Введение…1

2. Метод исчерпывания — начало интегрального исчисления…1

3. Определение основных понятий и принципов интегрального исчисления. …1

4. Символьный метод, операторы…4

5. Ньютон и Лейбниц-рождение противоречий…5

6. Эйлер. Понятие об интегральной сумме…7

7. Проблема двойных и тройных интегралов…9

8. Коши — решение парадокса существования конечных сумм из бесконечно малых слагаемых. …9

9. Заключение…10

10. Список литературы…11

Введение

Интегральное исчисление, вместе с исчислением дифференциальным, составляет основу математического анализа. Интегральным исчислением называют раздел математики, занимающийся изучением интегралов, их свойств и методов вычисления.

Метод исчерпывания — начало интегрального исчисления.

Интегральное исчисление появилось во времена античного периода развития математической науки и началось с метода исчерпывания, который был разработан математиками Древней Греции, и представлял собой набор правил, разработанных Евдоксом Книдским. По этим правилам по которым вычисляли площадей и объёмы. Далее метод получил своё развитие в работах Евклида. Особым искусством и разнообразием применения метода исчерпывания прославился Архимед.

Рассмотрим типичную схему доказательств, используемую в методе исчерпывания. Она выглядела следующим образом. Для того, чтобы определить величину A строилась некоторая последовательность величин C1, C2, …, Cn, … такая, что

Предполагалось также известным такое B, что

и что для любого целого N можно найти достаточно большое n, удовлетворяющее условию:

Где величина d — константа. В результате трудоёмких вычислений, из последнего выражения удавалось получить следующее:

Таким образом, видим, что рассматриваемый метод был основан на аппроксимации рассматриваемых объектов ступенчатыми фигурами или телами, составленными из простейших фигур или пространственных тел (прямоугольников, параллелепипедов, цилиндров и т. п., обозначенных последовательностью А1, А2, …, Аn, …). Таким образом метод исчерпывания можно представить как античный интегральный метод.

Определение основных понятий и принципов

интегрального исчисления.

Известно, что кризис и упадок древнего мира привёл к забвению многих ценных научных достижений. Не повезло и методу исчерпывания — о нём вспомнили лишь в XVII веке. Дальнейшее его развитие связано с такими известными в математике именами, как Исаак Ньютон, Готфрид Лейбниц, Леонард Эйлер и ряда других выдающихся учёных. Они положили основу современного математического анализа.

Все возрастающие запросы практики и других наук в конце XVII и в XVIII веке побудили ученых максимально расширить область и методы исследований математики. На первое место выдвинулись понятия бесконечности, движения, функциональной зависимости. Они стали основой новых методов математики.

Именно в эту историческую эпоху в математике и механике были получены классические результаты фундаментального значения. Основную роль здесь сыграло развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики.

Основанные на идеях, сформулированных в начале XVII веке великим математиком и астрономом Иоганом Кеплером, в конце XVII века были разработаны основные понятия и теория интегрального и дифференциального исчислений, связь операций дифференцирования и интегрирования, а также их применение к решению прикладных задач.

Известна следующая забавная история. В ноябре 1613 года королевский математик и астролог австрийского двора И. Кеплер праздновал свадьбу. Для подготовки к ней ему нужно было приобрести несколько бочек виноградного вина. При их покупке Кеплер был удивлен тем, как продавец определял вместимость бочки, производя одно единственное действие — измеряя расстояние от наливного отверстия до самой дальней от него точки днища. Такое измерение совершенно не учитывало форму бочки! Кеплер сразу увлёкся этой интереснейшей математической задачей — по нескольким измерениям вычислить вместимость бочки. Размышляя над ней, Кеплер вывел формулы не только для объёма бочек, но и для объёма самых различных тел: лимона, яблока, айвы и даже турецкой чалмы. Кеплеру для каждого из изучаемых тел создавал новые, нередко очень хитроумные методы, что оказалось крайне неудобно. Позднее именно попытка найти общие, простые методы решения подобных задач и привела к возникновению современного интегрального счисления. Но это уже была заслуга совсем другого математика.

Не найти другого учёного, исследования которого оказали бы столь сильное влияние на историю мировой науки и культуры, как Исаак Ньютон. Известный математик и историк науки Б. Л. Ван-дер-Варден в своей книге «Пробуждающаяся наука» написал: «Каждый естествоиспытатель безусловно согласится, что механика Ньютона есть основа современной физики. Каждый астроном знает, что современная астрономия начинается с Кеплера и Ньютона. И каждый математик знает, что самим значительным н наиболее важным для физики отделом современной математики является анализ, в основе которого лежат дифференциальное и интегральное исчисления Ньютона. Следовательно, труды Ньютона являются основой огромной части точных наук нашего времени». И не только наук: «Математика и техника влияют даже на нашу духовную жизнь, и настолько. что мы редко можем представить это себе полностью. Вслед за необычайным взлётом, которое пережило и XVII веке естествознание, последовал неизбежно рационализм XVIII века, обожествление разума, упадок религии… Кто отдает себе отчет в том, — спрашивает автор, — что с исторической точки зрения Ньютон является самой значительной фигурой XVII века?»