Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

Содержание

1 Постановка задачи

2 Теоретическая часть

2.1 Понятие о кубатурных формулах

2.2 Метод ячеек 3

2.3 Последовательное интегрирование

2.4 Кубатурная формула типа Симпсона

2.5 Принципы построения программ с автоматическим выбором шага

3 Список использованной литературы

4 Практическая часть

4.1 Решение задачи

4.2 Блок-схема программы

4.3 Листинг программы

4.4 Результаты решения

1 Постановка задачи

Найти при помощи метода ячеек значение интеграла, где —  область, ограниченная функциями .

2 Теоретическая часть

Рассмотрим K-мерный интеграл вида:

(1)

где — некоторая K-мерная точка. Далее для простоты все рисунки будут сделаны для случая K=2.

2.1 Понятие о кубатурных формулах

Кубатурные формулы или, иначе формулы численных кубатур предназначены для численного вычисления кратных интегралов.

Пусть функция определена и непрерывна в некоторой ограниченной области . В этой области выбирается система точек (узлов) . Для вычисления интеграла приближённо полагают:

(2)

Чтобы найти коэффициенты , потребуем точного выполнения кубатурной формулы (2) для всех полиномов

(3)

степень которых не превышает заданного числа . Для этого необходимо и достаточно, чтобы формула (2) была точной для произведения степеней . Полагая в (1) , будем иметь:

(4)

Таким образом, коэффициенты формулы (2), вообще говоря, могут быть определены из системы линейных уравнений (4).

Для того чтобы система (4) была определённой, необходимо, чтобы число неизвестных было равно числу уравнений. В случае получаем:

2.2 Метод ячеек

Рассмотрим K-мерный интеграл по пространственному параллелепипеду . По аналогии с формулой средних можно приближённо заменить функцию на её значение в центральной точке параллелепипеда. Тогда интеграл легко вычисляется:

(5)

Для повышения точности можно разбить область на прямоугольные ячейки (рис. 2). Приближённо вычисляя интеграл в каждой ячейке по формуле средних и обозначая через соответственно площадь ячейки и координаты её центра, получим:

(6)

Справа стоит интегральная сумма; следовательно, для любой непрерывной она сходится к значению интеграла, когда периметры всех ячеек стремятся к нулю.

Оценим погрешность интегрирования. Формула (5) по самому её выводу точна для . Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции. В самом деле, разложим функцию по формуле Тейлора:

(7)

где , а все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (5) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы:

(8)

ибо все члены разложения, нечётные относительно центра симметрии ячейки, взаимно уничтожаются.

Пусть в обобщённой квадратурной формуле (6) стороны пространственного параллелепипеда разбиты соответственно на N1, N2, …, Nk равных частей. Тогда погрешность интегрирования (8) для единичной ячейки равна:

Суммируя это выражение по всем ячейкам, получим погрешность обобщённой формулы:

(9)

т.е. формула имеет второй порядок точности. При этом, как и для одного измерения, можно применять метод Рунге-Ромберга, но при одном дополнительном ограничении: сетки по каждой переменной сгущаются в одинаковое число раз.

Обобщим формулу ячеек на более сложные области. Рассмотрим случай K=2. Легко сообразить, что для линейной функции формула типа (5) будет точна в области произвольной формы, если под S подразумевать площадь области, а под -координаты центра тяжести, вычисляемые по обычным формулам:

(10)

Разумеется, практическую ценность это имеет только для областей простой формы, где площадь и центр тяжести легко определяется; например, для треугольника, правильного многоугольника, трапеции. Но это значит, что обобщённую формулу (6) можно применять к областям, ограниченным ломаной линией, ибо такую область всегда можно разбить на прямоугольники и треугольники.