Алгебраические числа

Содержание.

  1. Введение
  2. I. Краткий исторический очерк
  3. II. Поле алгебраических чисел
  4. 2.1. Понятие числового поля
  5. 2.2. Алгебраическое число
  6. 2.3. Поле алгебраических чисел
  7. III. Рациональные приближения алгебраических чисел
  8. 3.1 Теорема Лиувиля
  9. 3.2 Трансцендентные числа Лиувиля
  10. Заключение

Введение.

Первоначальные элементы математики связаны с появлением навыков счета, возникающих в примитивной форме на сравнительно ранних ступенях развития человеческого общества, в процессе трудовой деятельности.

Исторически теория чисел возникла как непосредственное развитие арифметики. В настоящее время в теорию чисел включают значительно более широкий круг вопросов, выходящих за рамки изучения натуральных чисел. В теории чисел рассматриваются не только натуральные числа, но и множество всех целых чисел, а так же множество рациональных чисел.

Если рассматривать корни многочленов: f (x)=xn+a1xn-1+…+an с целыми коэффициентами, то обычные целые числа соответствуют случаю, когда этот многочлен имеет степень n=1. Во множестве комплексных чисел естественно выделить так называемые целые алгебраические числа, представляющие собой корни многочленов с целыми коэффициентами.

Изучение свойств таких чисел составляет содержание одного из важнейших разделов современной теории чисел, называемого алгебраической теорией чисел. Она связана с изучением различных классов алгебраических чисел.

I. Краткий исторический очерк.

Огромное значение в развитии теории чисел имели замечательные работы К. Гаусса (1777−1855). Гаусс наряду с изучением обычных чисел начал рассматривать так же и арифметику чисел, получивших название целых гауссовских чисел, а именно числа вида a+bi, где a и b — обычные целые числа. Эти его исследования положили начала алгебраической теории чисел.

Теория алгебраических чисел была построена в работах Куммера (1810−1893) и Дирихле (1805−1859) и развита затем Кронекером (1823−1891), Дедекиндом (1831−1916) и Е.И. Золотаревым (1847−1878). Работы Лиувилля (1809−1882) и Эрмита (1822−1901) явились основой трансцендентных чисел.

Вопросы аппроксимации алгебраических чисел рациональными были существенно продвинуты в начале века А. Туэ, а затем в пятидесятых годах в работах К. Рота.

В последнее время все большее внимание специалистов по теории чисел привлекает алгебраическая теория чисел.

Здесь надо назвать работы Г. Хассе, Е. Гекке, а в особенности французского математика А. Вейля, результаты которого были использованы во многих теорико-числовых исследованиях, как например Д. Берджессом в проблеме о наименьшем квадратичном вычете.

К алгебраической теории чисел относятся и интересные работы советского математика И.Р. Шафаревича, а так же работы Б.Н. Делонга по теории кубических форм.

II. Поле алгебраических чисел.

2.1 Понятие числового поля

Естественный и важный подход к выделению и изучению тех или иных множеств чисел связан с замкнутостью множеств чисел относительно тех или иных действий.

Определение 1: Мы говорим, что некоторое множество чисел М замкнуто относительно некоторого действия, если для всяких двух чисел их М, для которых определен результат данного действия над ним, число, является этим результатом, всегда принадлежащим М.

Пример:

  1. N Множество натуральных чисел замкнуто относительно сложения, т.к. «a, bО N => (a+b) О N.
  2. В отношении умножения множество N так же замкнуто. Но оно не является замкнутым относительно вычитания и деления. Действительно:

    5, 7 О N, но 5−7=-2 П N,

    3, 2О N, но 3:2=1,5 П N

  3. Множество целых чисел Z замкнуто относительно сложения, вычитания и умножения.
  4. Множество чисел вида 2к, кО N, замкнуто относительно умножения и деления.

2к* 2l=2k+l

2к:2l=2k-l

В связи с замкнутостью действий на множестве выделились классы числовых множеств.

Рассмотрим один их классов, называемых полем.

Определение 2: Множество чисел М, содержащие не менее двух чисел, называется числовым полем, если оно замкнуто относительно действий сложения, вычитания, умножения и деления.

Последнее означает, что для любых a, b О M, должно иметь место a+b, a-b, a*b О M. Так же для любого aО M и любого b№ 0 из М, должно выполняться a: bО M.

Пример:

Среди важнейших числовых полей наиболее важными являются: