Медь. Серебро. Золото

МЕДЬ

Общее содержание меди в земной коре сравнительно невелико (0,01 вес %), однако она чаще, чем другие металлы, встречается в самородном состоянии, причём самородки меди достигают значительной величины. Этим, а также сравнительной лёгкостью обработки меди объясняется то, что она ранее других металлов была использована человеком.

В настоящее время медь добывают из руд. Последние, в зависимости от характера входящих в их состав соединений, подразделяют на оксидные и сульфидные. Сульфидные руды имеют наибольшее значение, поскольку из них выплавляется 80% всей добываемой меди.

Важнейшими минералами, входящими в состав медных руд, являются: халькозин или медный блеск — Cu2S; халькопирит или медный колчедан — CuFeS2; малахит — (CuOH) 2CO3.

Медные руды, как правило содержат большое количество пустой породы, так что непосредственное получение из них меди экономически невыгодно. Поэтому в металлургии меди особенно важную роль играет обогащение (обычно флотационный метод), позволяющее использовать руды с небольшим содержание меди.

Выплавка меди их её сульфидных руд или концентратов представляет собою сложный процесс. Обычно он слагается из следующих операций:

  • обжиг
  • плавка
  • конвертирование
  • огневое рафинирование
  • электролитическое рафинирование

В ходе обжига большая часть сульфидов примесных элементов превращается в оксиды. Так, главная примесь большинства медных руд, пирит — FeS2 — превращается в Fe2O3. Газы, отходящие при обжиге, содержат SO2 и используются для получения серной кислоты.

Получающиеся в ходе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Основной же продукт плавки — жидкий штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь.

Для извлечения ценных спутников (Au, Ag, Te и др.) и для удаления вредных примесей черновая медь подвергается огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка, кобальта окисляются, переходят в шлак и удаляются. Медь же разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.

Чистая медь — тягучий вязкий металл светло-розового цвета, легко прокатываемый в тонкие листы. Она очень хорошо проводит тепло и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая плёнка оксидов придаёт меди более тёмный цвет и также служит хорошей защитой от дальнейшего окисления. Hо в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налётом гидроксокарбоната меди — (CuOH) 2CO3. При нагревании на воздухе в интервале температур 200−375oC медь окисляется до чёрного оксида меди (II) CuO. При более высоких температурах на её поверхности образуется двухслойная окалина: поверхностный слой представляет собой оксид меди (II), а внутренний — красный оксид меди (I) — Cu2O.

Медь широко используется в промышленности из-за:

  • высокой теплопроводимости
  • высокой электропроводимости
  • ковкости
  • хороших литейных качеств
  • большого сопротивления на разрыв
  • химической стойкости

Около 40% меди идёт на изготовление различных электрических проводов и кабелей. Широкое применение в машиностроительной промышленности и электротехнике нашли различные сплавы меди с другими веществами. Hаиболее важные из них являются латуни (сплав меди с цинком), медноникеливые сплавы и бронзы.

Латунь содержит до 45% цинка. Различают простые латуни и специальные. В состав последних, кроме меди и цинка, входят другие элементы, например, железо, алюминий, олово, кремний. Латунь находит разнообразное применение — из неё изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности — часовых. Некоторые специальные латуни обладают высокой коррозийной стойкостью в морской воде и применяются в судостроении. Латунь с высоким содержанием меди — томпак — благодаря своему внешнему сходству с золотом используется для ювелирных и декоративных изделий.

Медноникеливые сплавы и бронзы также подразделяются на несколько различных групп — по составу других веществ, содержащихся в примесях. И в зависимости от химических и физических свойств находят различное применение.

Все медные сплавы обладают высокой стойкостью против атмосферной коррозии.

В химическом отношении медь — малоактивный металл. Однако с галогенами она реагирует уже при комнатной температуре. Например, с влажным хлором она образует хлорид — CuCl2. При нагревании медь взаимодействует и с серой, образуя сульфид — Cu2S.

Hаходясь в ряду напряжения после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислоты на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

2Cu + 4HCl + O2 —> 2CuCl2 + 2H2O

Летучие соединения меди окрашивают несветящееся пламя газовой горелки в сине-зелёный цвет.

Соединения меди (I) в общем менее устойчивы, чем соединения меди (II), оксид Cu2O3 и его производные весьма нестойки. В паре с металлической медью Cu2O применяется в купоросных выпрямителях переменного тока.

Оксид меди (II) (окись меди) — CuO — чёрное вещество, встречающееся в природе (например в виде минерала тенерита). Его легко можно получит прокаливанием гидроксокарбоната меди (II) (CuOH) 2CO3 или нитрата меди (II) — Cu (NO3) 2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород -- в воду и восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.

Гидроксокарбонат меди (II) — (CuOH) 2CO3 — встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зелёный цвет. Применяется для получения хлорида меди (II), для приготовления синих и зелёных минеральных красок, а также в пиротехнике.

Сульфат меди (II) — CuSO4 — в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях.

Смешанный ацетат-арсенит меди (II) — Cu (CH3COO) 2• Cu3(AsO3) 2 — применяется под названием «парижская зелень» для уничтожения вредителей растений.

Из солей меди вырабатывают большое количество минеральных красок, разнообразных по цвету: зелёных, синих, коричневых, фиолетовых и чёрных. Все соли меди ядовиты, поэтому медную посуду лудят --- покрывают внутри слоем олова, чтобы предотвратить возможность образования медных солей.

Характерное свойство двухзарядных ионов меди --- их способность соединяться с молекулами аммиака с образованием комплексных ионов.

Медь принадлежит к числу микроэлементов. Такое название получили Fe, Cu, Mn, Mo, B, Zn, Co в связи с тем, что малые количества их необходимы для нормальной жизнедеятельности растений. Микроэлементы повышают активность ферментов, способствуют синтезу сахара, крахмала, белков, нуклеиновых кислот, витаминов и ферментов. Микроэлементы вносят в почву вместе с микроудобрениями. Удобрения, содержащие медь, способствуют росту растений на некоторых малоплодородных почвах, повышают их устойчивость против засухи, холода и некоторых заболеваний.

СЕРЕБРО

Серебро распространено в природе значительно меньше, чем медь (около 10-5 вес. %). В некоторых местах (например, в Канаде) серебро находится в самородном состоянии, но большую часть серебра получают из его соединений. Самой важной серебряной рудой является серебряный блеск (аргент) — Ag2S.

В качестве примеси серебро встречается почти во всех медных и серебряных рудах. Из этих руд и получают около 80% всего добываемого серебра.

Чистое серебро — очень мягкий, тягучий металл. Оно лучше всех металлов проводит электрический ток и тепло.

Hа практике чистое серебро вследствие мягкости почти не применяется: обычно его сплавляют с большим или меньшим количеством меди. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, лабораторной посуды. Серебро используется для покрытия им других металлов, а также радиодеталей в целях повышения их электропроводимости и устойчивости к коррозии. Часть добываемого серебра расходуется на изготовление серебряно-цинковых аккумуляторов.

Серебро — малоактивный металл. В атмосфере воздуха оно не окисляется ни при комнатных температурах, ни при нагревании. Часто наблюдаемое почернение серебряных предметов — результат образования на их поверхности чёрного сульфида серебра — AgS2. Это происходит под влиянием содержащегося в воздухе сероводорода, а также при соприкосновении серебряных предметов с пищевыми продуктами, содержащими соединения серы.

4Ag + 2H2S + O2 —> 2Ag2S +2H2O

В ряду напряжения серебро расположено значительно дальше водорода. Поэтому соляная и разбавленная серная кислоты на него не действуют. Растворяют серебро обычно в азотной кислоте, которая взаимодействует с ним согласно уравнению:

Ag + 2HNO3 —> AgNO3 + NO+ H2O

Серебро образует один ряд солей, растворы которых содержат бесцветные катионы Ag+.

При действии щелочей на растворы солей серебра можно ожидать получения AgOH, но вместо него выпадает бурый осадок оксида серебра (I):