Золото

В связи с быстрыми темпами развития техники связи, электронной, авиационной, космической и других отраслей промышленности значительно вырос интерес к золоту. В настоящее время разработано большое количество новых сплавов золота, а так же технологические процессы нанесения покрытия золотом и получение многослойных материалов.

Распространенность золота в природе

В земной коре содержится золота в 20 раз меньше, чем серебра, и в 200 раз меньше, чем ртути. Неравномерное распределение золота в различных частях земной коры затрудняет изучение его геохимических особенностей. В морях и океанах содержится около 10 млрд. т золота. Примерно столько же содержится золота в речных и подземных водах.

Повышенное содержание золота обнаруживают в водах источников и рек, протекающих в золотоносных районах. В природе золото находится главным образом в самородном виде и представляет собой минерал, являющийся твердым раствором серебра в золоте, содержащим до 43% Ag, с примесями меди, железа, свинца, реже висмута, ртути, платины, марганца и других элементов. Кроме того золото встречается в виде природных амальгам, а также химических соединений — соленидов и теллуридов. По размеру частиц самородное золото делится на тонкодисперсное (1 — 5 мкм), пылевидное (5 — 50 мкм), мелкое (0,05 — 2 мм) и крупное (более 2 мм). Частицы массой более 5 г относятся к самородкам. Крупнейшие самородки — ''Плита Холтермана'' (285 кг) и ''Желанный Незнакомец'' (71 кг) найдены в Австралии. Находки самородков известны во многих районах Урала, Сибири, Якутии и Колымы. Самородное золото концентрируется в гидротермальных месторождениях.

Месторождения золота делятся на коренные и рассыпные. Месторождения золота формировались в разные геологические эпохи на разных глубинах — от десятков метров до 4 — 5 км от поверхности земли. Коренные месторождения представлены жилами, системами жил, залежами и зонами прожилково — вкрапленных руд протяженностью от десятков до тысяч метров. В течение длительного периода истории земли горы разрушались и вода уносила все, что не растворялось в реках. Одновременно отделялись тяжелые минералы от легких и скапливались в местах, где скорость течения мала. Так образовались россыпные месторождения с концентрацией относительно крупного золота. Как правило, промышленные россыпи образуются относительно недалеко от коренных месторождений. Определенная часть микроскопических частиц золота остается в россыпях, однако вследствие невозможности его извлечения оно практического значения не имеет. Часть микроскопических и коллоидных частиц золота уносится водными истоками в моря, океаны и озера, где оно рассеянно в виде тончайших суспензий или находится в илистых осадках. Таким образом в результате действия эрозионных процессов большая часть золота безвозвратно утрачивается.

Химические свойства

Несмотря на то что золото в периодической системе Д. И. Менделеева находится в одной группе с серебром и медью, его химические свойства гораздо ближе к химическим свойствам металлов платиновой группы. Электродный потенциал пары Au — Au (111) равен — 1,5 В. Вследствие такого высокого значения на золото не действуют разбавленные и концентрированные HCI, HNO, HSO. Однако в HCI оно растворяется в присутствии таких окислителей, как двуокись магния, хлористое железо и медь, а также под большим давлением и при высокой температуре в присутствии кислорода. Золото легко растворяется также в смеси HCI и HNO (царская водка). В химическом отношении золото — малоактивный металл. На воздухе оно не изменяется, даже при сильном нагревании. Золото легко растворяется в хлорной воде и в аэрируемых растворах цианидов щелочных металлов. Ртуть также растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твердой. Известны два ряда соединений золота, отвечающие степеням окисленности +1 и +3. Так, золото образует два оксида — оксид золота (1), или закись золота, Au O и оксид золота (111), или окись золота, Au O. Более устойчивы соединения, в которых золото имеет степень окисленности +3. Соединения золота легко восстанавливаются до металла. Восстановителями могут быть водород под большим давлением, многие металлы, стоящие в ряду напряжений до золота, перекись водорода, двух хлористое олово, сернокислое железо, треххлористый титан, окись свинца, двуокись марганца, перекиси щелочных и щелочноземельных металлов. Для восстановления золота используют также различные органические вещества: муравьиную и щавелевую кислоты, гидрохинон, гидразин, метол, ацетилен и др. Для золота характерна способность к образованию комплексов с кислородом и серосодержащими лигандами, аммиаком и аминами вследствие высокой энергии образования соответствующих ионов. Чаще всего встречаются соединения одновалентного и трехвалентного золота. Часто их рассматривают как сложные молекулы, состоящие из равного числа атомов Au (1) и Au (3). Трехвалентное золото — очень сильный окислитель, оно образует много устойчивых соединений. Золото соединяется с хлором, фтором, йодом, кислородом, серой, теллуром и селеном.

Физико-механические свойства

Золото давно является объектом научных исследований и относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Постоянная решетки а составляет 4.7 855 А при 25 С, что соответствует значению 4.0724 А при 20 С.

Большие расхождения существуют в результате измерения температуры плавления золота — от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота l при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 — 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Для чистого золота характерны низкое значение предела прочности s — порядка 13 — 13.3 кгс/мм — и высокое значение относительного удлинения — порядка 50% - в отожженном состоянии. Предел текучести s также очень низок, он равен 0.35 кгс/мм. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Применение золота в науке и технике

Тысячелетиями золото использовалось для производства ювелирных украшений и монет, а применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 — 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро — и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии.