Тенденции и перспективы развития СуперЭВМ

  • эти вспомогательные функции могут выполняться параллельно с основными вычислениями.
  • для реализации не требуются многие из тех средств, которые обеспечивают высокую производительность основного процессора, например, возможность выполнения операций с плавающей запятой и векторных операций.

В дальнейшем, при интеграции скалярной, векторной и параллельной обработки в рамках единой вычислительной подсистемы состав этих вспомогательных функций должен быть дополнен функциями анализа программ с целью обеспечения требуемого уровня параллелизма и распределения отдельных частей программы по различным ветвям вычислительной подсистемы.

Появление суперЭВМ сопровождалось повышением их общей мощности потребления (выше 100 кВт) и увеличением плотности тепловых потоков на различных уровнях конструкции. Их создание не в последнюю очередь оказалось возможным, благодаря использованию эффективных жидкостных и фреоновых систем охлаждения. Является ли значительная мощность существенным признаком суперЭВМ? Ответ на этот вопрос зависит от того, что вкладывается в понятие суперЭВМ.

Если считать, что суперЭВМ или, точнее, суперсистема — это система с наивысшей возможной производительностью, то энергетический фактор остается одним из определяющих эту производительность. По мере развития технологии мощность одного вентиля в микропроцессорах уменьшается, но при повышении производительности процессора за счет параллелизма общая мощность в ряде случаев растет. При объединении большого числа микропроцессоров в системе с массовым параллелизмом интегральная мощность и тепловыделение становятся соизмеримыми с аналогичными показателями для векторно-конвейерных систем. Однако, иногда в рекламных целях параллельные системы с небольшим числом процессоров сравниваются с суперкомпьютерами предыдущего или более раннего поколений, чтобы показать их преимущества в смысле простоты и удобства эксплуатации. Естественно, из такого некорректного сравнения нельзя сделать вывод о целесообразности создания современных суперсистем.

Основным стимулом создания суперсистем являются потребности решения больших задач. В свою очередь, исследования и разработки по суперсистемам стимулируют целый комплекс фундаментальных и прикладных исследований, результаты которых используются в дальнейшем в других областях. Прежде всего, это касается архитектуры и схемотехники вычислительных машин, высокочастотных интегральных схем и средств межсоединений, эффективных систем отвода тепла. Не менее важны результаты по методам распараллеливания при выполнении отдельных операций и участков программ на аппаратном уровне, методам построения параллельных алгоритмов, языков и программных систем для эффективного решения больших задач.