Тенденции и перспективы развития СуперЭВМ

В развитие вычислительных средств всегда вносили наибольший вклад технологические решения. Причём основополагающей характеристикой поколения вычислительных систем была элементная база, так как переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности и надежности вычислительных систем.

Несколько приостановило поиски принципиально новых архитектурных решений бурное развитие технологии СБИС и разработка последних поколений микропроцессоров, тем не менее становится очевидным, что чисто технологические решения утратили свое монопольное положение.

Так, например, в ближайшем будущем заметно возрастает значение проблемы преодоления разрыва между аппаратными средствами и методами программирования. Эта проблема решается чисто архитектурными средствами, при этом роль технологии является косвенной: высокая степень интеграции создает условия для реализации новых архитектурных решений. Также не вызывает недоумения и тот факт, что без кардинальной перестройки архитектурных принципов поддерживать интенсивные темпы развития средств вычислительной техники уже невозможно. Самые оптимистические прогнозы свидетельствуют: тактовые частоты современных и перспективных СБИС могут быть увеличены в обозримом будущем до 5 ГГц.

Достигнутая степень интеграции, в свою очередь, позволяет строить параллельные системы, в которых число процессоров может достигать десятков тысяч. В области повышения производительности вычислительных систем резерв технологических решений ограничивается одним порядком. Освоение же массового параллелизма и новых архитектурных решений содержит резерв повышения производительности на несколько порядков.

Вообще, в развитии вычислительных средств выделяют три основные проблемы:

— повышение производительности;

— повышение надежности;

— покрытие семантического разрыва.

Этапы развития вычислительных средств принято различать по поколениям машин. Характеристика поколения определяется конкретными показателями, отражающими достигнутый уровень в решении трех перечисленных проблем. Поскольку огромный вклад в развитие вычислительных средств всегда принадлежал технологическим решениям, основополагающей характеристикой поколения машин считалась элементная база. И действительно, переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности, надежности и сокращения семантического разрыва.

В настоящее время актуальным является переход к новым поколениям вычислительных средств: одним из доминируюших направлений развития суперЭВМ можно назвать вычислительные системы c MIMD-параллелизмом на основе матрицы микропроцессоров. Для создания подобных вычислительных систем, состоящих из сотен и тысяч связанных процессоров, потребовалось преодолеть ряд сложных проблем как в программном обеспечении (языки Parallel Pascal, Modula-2, Ada), так и в аппаратных средствах (эффективная коммутационная среда, высокоскоростные средства обмена, мощные микропроцессоры). Элементная база современных выcокопроизводительных систем характеризуется выcокой степенью интеграции (до 3,5 млн. транзисторов на кристалле) и высокими тактовыми частотами (до 600 МГц).

По сложившейся традиции решающая роль отводится технологии производства элементной базы. В то же время становится очевидным, что технологические решения утратили монопольное положение. Так, например, в ближайшей перспективе заметно возрастает значение проблемы покрытия семантического разрыва, что отражается в необходимости создания высокосложных программных продуктов и требует кардинального снижения трудоемкотси программирования. Эта проблема решается преимущественно архитектурными средствами. Роль технологии здесь может быть только косвенной: высокая степень интеграции создает условия для реализации архитектурных решений.

В настоящее время все фирмы и все университеты США, Западной Европы и Японии, разрабатывающие суперЭВМ, ведут интенсивные исследования в области многопроцессорных суперЭВМ с массовым параллелизмом, создают множество их типов, организуют их производство и ускоренными темпами осваивают мировой рынок в этой области. Многопроцессорные ЭВМ с массовым параллелизмом уже сейчас существенно опережают по производительности традиционные суперЭВМ с векторно-конвейерной архитектурой. Системы с массовым параллелизмом предъявляют меньшие требования к микропроцессорам и элементной базе и имеют значительно меньшую стоимость при любом уровне производительности, чем векторно-конвейерные суперЭВМ. Уже в текущем десятилетии производительность суперЭВМ с массовым параллелизмом достигнет колоссальной величины - десятков тысяч миллиардов операций в секунду с плавающей запятой над 64-разрядными числами (десятков Тфлопс).

На ежегодной конференции в Чепел-Хилл (Сев.Каролина) представлен проект фирмы IBM, целью которого является создание гиперкубического параллельного процесора в одном корпусе. Конструкция, названная Execube, имеет 8 16-разрядных микропроцесоров, встроенных в кристалл 4Мбит динамического ЗУ (ДЗУ). При этом степень интеграци составляет 5 млн. транзисторов. Микросхема изготовлена по КМОП-технологии с тремя уровнями металлизации на заводе IBM Microelectronic (Ясу, Япония). Execube представляет собой попытку повышения степени интеграции процессора с памятью путем более эффективного доступа к информации ДЗУ. По существу, память превращается в расширенные регистры процессоров. Производительность микросхемы составляет 50 млн оп/с.

Фирма CRAY Research объявила о начале выпуска суперкопьютеров CRAY T3/E. Основная характеристика, на которой акцентировали внимание разработчики — масштабируемость. Минимальная конфигурация составляет 8 микропроцессоров, максимальная- 2048. По сравнению с предыдущей моделью T3/D соотношение цена/производительность снижена в 4 раза и составляет 60 долл/Мфлопс, чему способствовало применение недорогих процессоров DEC Alpha EVC, изготовленных по КМОП-технологии. Предполагаемая стоимость модели Т3/Е на основе 16 процессоров с 1-Гбайт ЗУ составит 900 тыс. долларов, а цена наиболее мощной конфигурации (1024 процессора, ЗУ 64 Гбайт) -39,7 млн. долларов при пиковой производительности 600 Гфлопс.

Одним из способов дальнейшего повышения производительности вычислительной системы является объединение суперкомпьютеров в кластеры при помощи оптоволоконных соединений. С этой целью компьютеры CRAY T3/E снабжены каналами ввода/вывода с пропускной способностью 128 Гбайт/с. Потенциальные заказчики проявляют повышенный интерес к новой разработке фирмы. Желание приобрести компьютер изъявили такие организации как Pittsburgh Supercomputer Center, Mobile Oil, Департамент по океанографии и атмосферным исследованиям США. При этом подписано несколько контрактов на изготовление нескольких компьютеров 512-процессорной конфигурации.

Среди японских компаний следует выделить фирму Hitachi, которая выпустила суперкомпьютер SR2201 с массовым параллелизмом, содержащий до 2048 процесоров. В основе системы переработанная компанией процессорная архитектура RA-RISC от фирмы Hewlett-Paccard. Псевдовекторный процессор функционирует под управлением ОС HP-UX/MPP Mash 3.0. В компьютере, кроме того, использована система поддержки параллельного режима работы Express, созданная корпорацией Parasoft и получившая название ParallelWare. Производительность нового компьютера составляет 600 Гфлопс. К марту 1999 г. фирма планирует продать 30 суперкомпьютеров.