Искусственный интеллект

Попытки построить машины, способные к разумному поведению, в значительной мере вдохновлены идеями профессора МТИ Норберта Винера, одной из выдающихся личностей в интеллектуальной истории Америки. Помимо математики он обладал широкими познаниями в других областях, включая нейропсихологию, медицину, физику и электронику.

Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. «Если затруднения в решении какой-либо проблемы психологии имеют математический характер, пояснял он, — то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего».

Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа «обратной связи», который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в использовании информации, поступающей из окружающего мира, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигналов они соответственно изменяли наводку орудий, то есть — заметив попытку отклонения самолета от курса, они тотчас расчитывали его дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись.

В дальнейшем Винер разработал на принципе обратной связи теории как машинного так и человеческого разума. Он доказывал, что именно благодаря обратной связи все живое приспосабливается к окружающей среде и добивается своих целей. «Все машины, претендующие на „разумность“, — писал он, — должны обладать способность преследовать определенные цели и приспосабливаться, т. е. обучаться». Созданной им науке Винер дает название кибернетика, что в переводе с греческого означает рулевой. (2) Следует отметить, что принцип «обратной связи», введенный Винером был в какой-то степени предугадан Сеченовым в явлении «центрального торможения» в «Рефлексах головного мозга» (1863 г.) и рассматривался как механизм регуляции деятельности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.

Нейронный подход.

К этому времени и другие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох, обладавший, как и Винер, философским складом ума и широким кругом интересов. В 1942 г. Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи перекликались с собственными идеями Маккалоха относительно работы головного мозга. В течении следующего года Маккалох в соавторстве со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, — рабочий инструмент одной из систем математической логики. Английский математик XIXв. Джордж Буль, предложивший эту остроумную систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию, а нуль — ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных «нейронов» и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т. е. она обладает всеми чертами интеллекта.

Теории Маккаллоха-Питтса в сочетании с книгами Винера (2) вызвали огромный интерес к разумным машинам. В 40−60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов.

Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый «восходящий метод» движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании «адаптивной сети», «самоорганизующейся системы» или «обучающейся машины» — все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в те времена бихевиористской школой психологии, т. е. вести себя так же как живые организмы. Однако отнюдь не во всех случаях возможна аналогия с живыми организмами. Как однажды заметили Уоррен Маккаллох и его сотрудник Майкл Арбиб, «если по весне вам захотелось обзавестись возлюбленной, не стоит брать амебу и ждать пока она эволюционирует».

Но дело здесь не только во времени. Основной трудностью, с которой столкнулся «восходящий метод» на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.