Есть ли пределы развития и миниатюризации компьютеров?

b) Предел второй: память

Память компьютера ограничена его энтропией, утверждает Сет Ллойд, то есть степенью беспорядка, случайности в системе. В теории информации понятие энтропии — аналог понятия количества информации. Чем более однородна и упорядочена система, тем меньше информации она в себе содержит.

Величина энтропии S пропорциональна натуральному логарифму числа различимых состояний системы (W): S =k*ln (W), где k — постоянная Больцмана. Смысл этого соотношения очевиден: чем больший объем информации вы хотите сохранить, тем больше различимых состояний вам потребуется. Например, для записи одного бита информации необходимо два состояния: включено и выключено. Чтобы записать два бита, потребуется уже 4 различных состояния, 3 бита — 8, n битов — 2eN состояний.

Таким образом, чем больше различных состояний в системе, тем выше ее запоминающая способность.

Чему равна энтропия «предельного» квантового компьютера?

Во-первых, она зависит от объема компьютера: чем он больше, тем большее число возможных положений в пространстве могут занимать его частицы. Во-вторых, необходимо знать распределение частиц по энергиям. Для этого можно воспользоваться готовым расчетом, выполненным еще сто лет назад Максом Планком при решении задачи о так называемом черном теле. Что же мы получим? Оказывается, литр квантов света может хранить около 1031 битов информации — это в 1020 раз больше, чем можно записать на современный 10-гигабайтный жесткий диск! Откуда такая огромная разница? По мнению Ллойда, все дело в том, что способ, которым в современных компьютерах записывается и хранится информация, чрезвычайно неэкономен и избыточен. За хранение одного бита отвечает целый «магнитный домен» — а ведь это миллионы атомов. Таким образом, вновь встает вопрос об уменьшении размеров ЭВМ.

с) Перспективы развития квантовых устройств

На сегодня существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты.

И. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул.

Российский исследователь М. В. Фейгельман, работающий в институте теоретической физики им. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводниковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце-по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем.