Медные сплавы

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30−40 кгс/мм2 у сплавов и 25−29 кгс/мм2 у технически чистой меди (табл. 35−39).

Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900−12 000 кгс/мм2 ниже, чем у стали).

Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.

Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, a следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.

Марки медных сплавов

Марки обозначаются следующим образом.

Первые буквы в марке означают: Л — латунь и Бр. — бронза.

Буквы, следующие за буквой Л в латуни или Бр. В бронзе, означают: А — алюминий, Б — бериллий, Ж — железо, К — кремний, Мц — марганец, Н — никель, О — олово, С свинец, Ц — цинк, Ф. — фосфор.

Цифры, помещенные после буквы, указывают среднее процентное содержание элементов. Порядок расположения цифр, принятый для латуней, отличается от порядка, принятого для бронз.

В марках латуни первые две цифры (после буквы) указывают содержание основного компонента — меди. Остальные цифры, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов.

Эти цифры расположены в том же порядке, как и буквы, указывающие присутствие в сплаве того или иного элемента. Таким образом содержание цинка в наименовании марки латуни не указывается и определяется по разности. Например, Л86 означает латунь с 68% Cu (в среднем) и не имеющую других легирующих элементов, кроме цинка; его содержание составляет (по разности) 32%. ЛАЖ 60−1-1 означает латунь с 60% Cu, легированную алюминием (А) в количестве 1%, с железом (Ж) в количестве 3% и марганцем (Мц) в количестве 1%. Содержание цинка (в среднем) определяется вычетом из 100% суммы процентов содержания меди, алюминия, железа и марганца.

В марках бронзы (как и в сталях) содержание основного компонента меди — не указывается, а определяется по разности. Цифры после букв, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов; цифры расположенные в том же порядке, как и буквы, указывающие на легирование бронзы тем или иным компонентом.

Например, Бр. ОЦ10−2 означает бронзу с содержанием олова (О) ~ 4% и цинка (Ц) ~ 3%. Содержание меди определяется по разности (из 100%). Бр. АЖНЮ-4−4 означает бронзу с 10% Al, 4% Fe и 4% Ni (и 82% Cu). Бр. КМц3−1 означает бронзу с 3% Si, и 1% Mn (и 96% Cu).

1. Медно-цинковые сплавы. Латуни (табл. 35).

По химическому составу различают латуни простые и сложные, а по структуре — однофазные и двухфазные.

Простые латуни легируются одним компонентом: цинком.

Однофазные простые латуни имеют высокую пластичность; она наибольшая у латуней с 30−32% цинка (латуни Л70, Л67). Латуни с более низким содержанием цинка (томпаки и полутомпаки) уступают латуням Л68 и Л70 в пластичности, но превосходят их в электро- и теплопроводности. Они поставляются в прокате и поковках.

Двухфазные простые латуни имеют хорошие ковкость (но главным образом при нагреве) и повышенные литейные свойства и используются не только в виде проката, но и в отливках. Пластичность их ниже чем у однофазных латуней, а прочность и износостойкость выше за счет влияния более твердых частиц второй фазы.

Прочность простых латуней 30−35 кгс/мм2 при однофазной структуре и 40−45 кгс/мм2 при двухфазной. Прочность однофазной латуни может быть значительно повышена холодной пластической деформацией. Эти латуни имеют достаточную стойкость в атмосфере воды и пара (при условии снятия напряжений, создаваемых холодной деформацией).

2. Оловянные бронзы (табл. 36).

Однофазные и двухфазные бронзы превосходят латуни в прочности и сопротивлении коррозии (особенно в морской воде).

Однофазные бронзы в катаном состоянии, особенно после значительной холодной пластической деформации, имеют повышенные прочностные и упругие свойства (δ>= 40 кгс/мм2).

Для двухфазных бронз характерна более высокая износостойкость.

Важное преимущество двухфазных оловянистых бронз — высокие литейные свойства; они получают при литье наиболее низкий коэффициент усадки по сравнению с другими металлами, в том числе чугунами. Оловянные бронзы применяют для литых деталей сложной формы. Однако для арматуры котлов и подобных деталей они используются лишь в случае небольших давлений пара.

Недостаток отливок из оловянных бронз — их значительная микропористость.

Поэтому для работы при повышенных давлениях пара они все больше заменяются алюминиевыми бронзами.

Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом).

3. Алюминиевые бронзы (табл. 37).

Эти бронзы (однофазные и двухфазные) все более широко заменяют латуни и оловянные бронзы.

Однофазные бронзы в группе медных сплавов имеют наибольшую пластичность (δ до 60%). Их используют для листов (в том числе небольшой толщины) и штамповки со значительной деформацией. После сильной холодной пластической деформации достигаются повышенные прочность и упругость.

Двухфазные бронзы подвергают горячей деформации или применяют в виде отливок. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Бронзы в отливках используют, в частности, для котельной арматуры сравнительно простой формы, но работающей при повышенных напряжениях.