Прогнозирование на основе аппарата нейронных сетей

dE dE dXj EAi = ---- = S (--- * ---) = S (EIj Wij). (4.7) dYi j dXj dYij j Пользуясь шагами 2 и 4, мы можем преобразовать величины EA одного слоя элементов в EA предыдущего слоя. Эту процедуру можно повторять, чтобы вычислять EA стольких предыдущих слоев, сколько их есть. Зная EA для элемента, мы можем воспользоваться шагами 2 и 3, чтобы вычислить EW на его выходных связях.

4.2.3. Современная оценка алгоритма обратного распространения На протяжении нескольких лет после его изобретения алгоритм обратного распространением оставался почти незамеченным, вероятно, потому, что не был в должной мере оценен специалистами. В начале 80-х годов Д. Румельхарт, работавший в то время в Калифорнийском университете в Сан-Диего, и Д. Паркер из Станфордского университете независимо друг от друга вновь открыли алгоритм. В 1986 году Румельхарт, Р. Уильямс, также из Калифорнийского университета в Сан-Диего, и Джеффери Е. Хинтон [5] продемонстрировали способность алгоритма обучить скрытые элементы вырабатывать интересные представления для сложных паттернов на входе и тем самым сделали его известным.

Алгоритм обратного распространения оказался на удивление эффективным в обучении сетей со многими слоями решению широкого класса задач [2,5,15]. Но более всего он эффективен в ситуациях, когда отношения между входом и выходом нелинейны, а количество обучающих данных велико. Применяя алгоритм, исследователи создали нейронные сети, способные распознавать рукописные цифры, предсказывать изменения валютного курса и оптимизировать химические процессы. Они даже воспользовались алгоритмом для обучения сетей, которые идентифицируют переродившиеся пред-раковые клетки в анализируемых образцах ткани и регулируют положение зеркал в телескопах, чтобы исключить атмосферные искажения.

Р. Андерсен из Массачусетского технологического института и Д. Зипсер из Калифорнийского университета в Сан-Диего показали, что алгоритм обратного распространения представляет собой весьма эффективный инструмент для понимания функций некоторых нейронов в коре головного мозга. Они научили нейронную сеть реагировать на зрительные стимулы, применив алгоритм обратного распространения. Затем они обнаружили, что реакция скрытых элементов удивительно схожа с реакцией реальных нейронов, выполняющих преобразование зрительной информации, поступающей от сетчатки, в форму, необходимую для более глубоких областей мозга, перерабатывающих зрительную информацию.

ВЫВОДЫ