Проблема искусственного интеллекта

Нейронный подход

К этому времени и другие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Нейрофизиолог Уоррен Маккалох со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, — рабочий инструмент одной из систем математической логики. Английский математик XIXв. Джордж Буль, предложивший эту остроумную систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию, а нуль — ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных «нейронов» и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т. е. она обладает всеми чертами интеллекта.

Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый «восходящий метод» движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании «адаптивной сети», «самоорганизующейся системы» или «обучающейся машины». Основной трудностью, с которой столкнулся «восходящий метод» на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов.

Появление перцептрона

Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенблат, труды которого, казалось, отвечали самым заметным устремлениям кибернетиков. В середине 1958 г. им была предложена модель электронного устройства, названного им перцептроном, которое должно было бы имитировать процессы человеческого мышления. Два года спустя, была продемонстрирована первая действующая машина «Марк-1», которая могла научиться распознавать некоторые из букв, написанных на карточках, которые подносили к его «глазам», напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим достижением «восходящего», или нейромодельного метода создания искусственного интеллекта. Чтобы научить перцептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или «самопрограммирования». При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существенными, чем другие. Перцептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности перцептрона были ограниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.

Ведущие представители так называемого «нисходящего метода» специализировались, в отличие от представителей «восходящего метода», в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например для игры в шахматы или поиска математических доказательств.

Интерес к кибернетике в последнее время возродился, так как сторонники «нисходящего метода» столкнулись со столь же неодолимыми трудностями. Но в основном ИИ стал синонимом нисходящего подхода, который выражался в составлении все более сложных программ для компьютеров, моделирующих сложную деятельность человеческого мозга.

Искусственный интеллект и теоретические проблемы психологии

Можно выделить две основные линии работ по ИИ. Первая связана с совершенствованием самих машин, с повышением «интеллектуальности» искусственных систем. Вторая связана с задачей оптимизации совместной работы «искусственного интеллекта» и собственно интеллектуальных возможностей человека.

В 1963 г. выступая на совещании по философским вопросам физиологии ВНД и психологии, А. Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательно соотношение «машинного» и «немашинного» есть соотнесение операционального и неоперационального в человеческой деятельности в то время этот вывод был достаточно прогрессивен и выступал против кибернетического редукционизма. Однако в последствии при сравнении операций, из которых слагается работа машины, и операций как единиц деятельности человека выявились существенные различия — в психологическом смысле «операция» отражает способ достижения результатов, процессуальную характеристику, в то время как применительно к машинной работе этот термин используется в логико-математическом смысле (характеризуется результатом).