Корпоративные ЛВС

Необходимы не только точные данные, но и определенная подготовка экспериментатора, понимание того, что означает программа моделирования и какие сценарии более жизнеспособны. Хотя инструментальные средства являются графическими и с ними легко работать, эти средства не дают конкретных рекомендаций, например, как «выделить этот сегмент сети» или «уменьшить здесь длину кабеля».

Средства моделирования способны показать, каким образом изменения могут повлиять на производительность, но интерпретировать данные, разрабатывать план устранения «узких» мест и готовить сценарии для проверки этих планов должен администратор сети.

ИНДЕКСЫ ПРОИЗВОДИТЕЛЬНОСТИ

Наиболее широко распространенные классы количественных индексов производительности для вычислительных систем перечислены в табл. 1.

Таблица 1 Основные классы количественных индексов производительности вычислительных систем

Класс индекса

Примеры индексов

Общее определение

Продуктивность

Пропускная способность Скорость выработки Максимальная выработка (максимум пропускной способности) Скорость выполнения команд Скорость обработки данных

Объем информации, обрабатываемой системой в единицу времени

Реактивность

Время ответа Время прохождения Время реакции

Время между предъявлением системе входных данных и появлением соответствую щей выходной информации

Использование

Коэффициенты использования оборудования (центральный процессор, канал ввода-вывода, устройство ввода-вывода) Коэффициент использования операционной системы Коэффициент использования общего модуля программного обеспечения (например компилятора) Коэффициент использования базы данных

Отношение времени использования указанной части системы (или ее использование для заданной цели) в течение заданного интервала времени к длительности этого интервала

Из общих определений, данных в той же таблице, очевидно, что индексы продуктивности имеют размерность объем 7 & 0 время 5−1 0, индексы реактивности размерность времени, а индексы использования безразмерны. В настоящее время не существует стандартизированного единого способа измерения объема, или количества информации, переработанной системой. Таким образом, в зависимости от системы и от ее рабочей нагрузки будут использоваться различные меры объема; среди наиболее распространенных можно назвать: задание, программу, процесс, шаг задания, задачу, сообщение, взаимодействие (обмен сообщениями), команду. Перечислить все значения, приписанные ранее и приписываемые ныне этим терминам в литературе по вычислительным системам, по-видимому, невозможно. Здесь мы только отметим, что все они до некоторой степени зависят от природы рабочей нагрузки, от языка, на котором программисты описывают свои алгоритмы для машины, от внутреннего языка машины и от способа организации системы. Таким образом, ни одна из этих мер не обладает свойством независимости от рабочей нагрузки и свойством независимости от системы — это два свойства, необходимые для того, чтобы можно было установить некоторую меру объема информации в качестве универсальной.

АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НА ОСНОВЕ ТЕОРИИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ ОБЩИЕ ПОЛОЖЕНИЯ

При аналитическом моделировании исследование процессов или объектов заменяется построением их математических моделей и исследованием этих моделей. В основу метода положены идентичность формы уравнений и однозначность соотношений между переменными в уравнениях, описывающих оригинал и модель. Поскольку события, происходящие в локальных вычислительных сетях, носят случайный характер, то для их изучения наиболее подходящими являются вероятностные математические модели теории массового обслуживания.