Конструирование микросхем и микропроцессоров

Требуется разработать комплект конструкторской документации интегральной микросхемы К 237 ХА2. По функциональному назначению разрабатываемая микросхема представляет собой усилитель промежуточной частоты. Микросхема должна быть изготовлена по тонкопленочной технологии методом свободных масок (МСМ) в виде гибридной интегральной микросхемы (ГИМС).

Рис. 1 Схема электрическая принципиальная

Таблица 1 Номиналы элементов схемы

Элемент

Номинал

Элемент

Номинал

Элемент

Номинал

Элемент

Номинал

R1

950 Ом

R7

4,25 кОм

R13

1 кОм

R19

1 кОм

R2

14 кОм

R8

12,5 кОм

R14

3,5 кОм

C1

3800 пФ

R3

45 кОм

R9

500 Ом

R15

10 кОм

VT1-VT8

КТ 312

R4

35 кОм

R10

3 кОм

R16

3,5 кОм

E

7,25 В

R5

12,5 кОм

R11

10 кОм

R17

2,5 кОм

R6

950 Ом

R12

500 Ом

R18

1 кОм

Для подачи на схему входного сигнала и снятия выходного к микросхеме требуется подключить некоторое количество навесных элементов. Одна из возможных схем включения приведена на следующем рисунке:

Рис. 2 Возможная схема включения

Таблица 2 Номиналы элементов схемы включения

Элемент

Номинал

Элемент

Номинал

RA

8,2 кОм

CB

1 мкФ

RB

43 Ом

CC

0,033 мкФ

RC

2,2 кОм

CD

0,015 мкФ

RD

1,5 кОм

CE

4700 пФ

CA

3300 пФ

CF

3300 пФ

Технические требования

Конструкцию микросхемы выполнить в соответствии с электрической принципиальной схемой по тонкопленочной технологии методом свободных масок в корпусе. Микросхема должна удовлетворять общим техническим условиям и удовлетворять следующим требованиям:

  • предельная рабочая температура — 150° С;
  • расчетное время эксплуатации — 5000 часов;
  • вибрация с частотой — 5−2000 Гц;
  • удары многократные с ускорением 35;
  • удары однократные с ускорением 100;
  • ускорения до 50.

Введение

Микросхема К 237 ХА 2 предназначена для усиления и детектирования сигналов ПЧ (промежуточной частоты) радиоприемных устройств не имеющих УКВ диапазона, а также для усиления напряжения АРУ (автоматической регулировки усиления). Широкополосный усилитель ПЧ состоит из регулируемого усилителя на транзисторах Т4, Т5 и Т6. Усиленный сигнал поступает на детектор АМ-сигналов (амплитудно-модулированных сигналов), выполненный на составном транзисторе Т7, Т8. Низкочастотный сигнал с резистора R19, включенного в эмиттерную цепь, подается через внешний фильтр на предварительный усилитель НЧ (низкой частоты), а также через резистор R15 на базу транзистора Т3, входящего в усилитель АРУ. Усиленное напряжение АРУ снимается с эмиттера транзистора Т2. Изменение напряжения на эмиттере транзистора Т2 вызывает изменение напряжения питания транзистора Т1, а следовательно и его усиления.

На частоте 465 кГц коэффициент усиления усилителя ПЧ составляет 1200 — 2500. Коэффициент нелинейных искажений не превышает 3%. Если входной сигнал меняется от 0,05 до 3 мВ, то изменение выходного напряжения не превышает 6дБ. Напряжение на выходе системы АРУ при отсутствии выходного сигнала составляет 3 — 4,5 В. Напряжение питания составляет 3,6 — 10 В. Потребляемая мощность не более 35 мВт.

Электрический расчет принципиальной схемы

Микросхема усиления промежуточной частоты (ПЧ) К 237ХА2 может быть изготовлена по тонкопленочной технологии с применением навесных элементов. Конструкция микросхемы выполняется методом свободной маски, при этом каждый слой тонкопленочной структуры наносится через специальный трафарет. На поверхности подложки сформированы пленочные резисторы, конденсаторы, а также контактные площадки и межэлементные соединения. Пленочная технология не предусматривает изготовление транзисторов, поэтому транзисторы выполнены в виде навесных элементов, приклеенных на подложку микросхемы. Выводы транзисторов привариваются к соответствующим контактным площадкам.

Основной задачей электрического расчета является определение мощностей, рассеиваемых резисторами и рабочих напряжений на обкладках конденсаторов.

Данные для расчета геометрических размеров тонкопленочных элементов

Таблица 3 Данные для расчета резисторов

Резистор

Рном, Вт

gR

Резистор

Рном, Вт

gR

R1

1,41E-6

0,2

0,1

R11

4,46E-3

0,22

0,1

R2

3,36E-8

0,22

0,1

R12

2,23E-4

0,2

0,1

R3

2,47E-4

0,22

0,1

R13

1,79E-5

0,2

0,1

R4

1,98E-4

0,22

0,1

R14

1,05E-2

0,2

0,1

R5

8,58E-6

0,22

0,1

R15

3,91E-10

0,22

0,1

R6

5,35E-13

0,2

0,1

R16

1,27E-6

0,2

0,1

R7

3,21E-5

0,2

0,1

R17

3,46E-4

0,2

0,1

R8

3,30E-3

0,22

0,1

R18

1,95E-4

0,2

0,1

R9

7,4E-5

0,2

0,1

R19

1,97E-4

0,2

0,1

R10

4,51E-5

0,2

0,1

Таблица 4 Данные для расчета конденсаторов

Конденсатор

Uраб, В

C1

2,348

0,23

0,115

Технологическая часть

  1. Изготовление масок;
  2. Подготовка подложек;
  3. Формирование тонкопленочной структуры;
  4. Подгонка номиналов;
  5. Резка пластин на кристаллы;
  6. Сборка;
  7. Установка навесных элементов;
  8. Контроль параметров;
  9. Корпусная герметизация;
  10. Контроль характеристик;
  11. Испытания;
  12. Маркировка;
  13. Упаковка.

Методы формирования тонкопленочных элементов

Основными методами нанесения тонких пленок в технологии ГИМС являются: термическое испарение в вакууме, катодное, ионно-плазменное и магнетронное распыления.

Термическое испарение в вакууме 10−3 — 10 -4 Па предусматривает нагрев материала до температуры, при которой происходит испарение, направленное движение паров этого материала и его конденсация на поверхности подложки. Рабочая камера вакуумной установки (Рис. 5, а) состоит из металлического или стеклянного колпака 1, установленного на опорной плите 8. Резиновая прокладка 7 обеспечивает вакуум-плотное соединение. Внутри рабочей камеры расположены подложка 4 на подложкодержателе 3, нагреватель подложки 2 и испаритель вещества 6. Заслонка 5 позволяет в нужный момент позволяет прекращать попадание испаряемого вещества на подложку. Степень вакуума в рабочей камере измеряется специальным прибором — вакуумметром.